[image: image23.png]Rt.1 S0LUTIONS

[image: image22.png]NMS GURU

512.627.6694 - guru@nmsguru.com

[image: image1.png]mitrapd NeKL Rules Structure

IBM/Tivoli Netcool

Probes' Best Practices Guide
Daniel L. Needles

January 21, 2011

Rev 2.0
Modification History

	AUTHOR
	DATE
	COMMENTS

	Daniel L. Needles
	10/31/2009
	Initial draft.

	Daniel L. Needles
	11/30/2009
	Reformatted to present tactics first and theory last.

	Daniel L. Needles
	12/16/2009
	Added GraphViz renderings.

	Daniel L. Needles
	1/21/2011
	Addional clean up.

[image: image2.png]NMS GURU

912.627.6694 - guru@nmsguru.com

[image: image22.png]

Contents

iModification History

iiContents

vTables and Figures

1Introduction

1What does the Tivoli Netcool Suite do?

3Purpose of this Document

5Intended Audience

6Additional Best Practices

6Introduction

6Tool Architecture

7Keep Consistent Programming Patterns

12Manage Co-dependent Fx Statement Relationships

16Code As Efficiently As Possible

18Code audit, debugging and tracing capabilities

20Maximize Event Work in Rules

23Automated Configuration Management

23Business Processes and Knowledge Management

24Organizational Structure

24Top Down Agendas.

24Non-support centric NMS Development.

24Summary

25Case Study: Mttrapd NcKL Conversion

25Introduction

25Mttrapd to NcKL Conversion Concerns

27Mttrapd to NcKL Conversion Process

32Automating Aspects of Mttrapd NcKL Conversion

35Automating Mttrapd NcKL Conversion

40Trimming NcKL Rules Based on Usage

40Introduction

40Gather Historical Data

41Gather Rules file Data

42Correlate the Two Datasets

44Future of Event Management

44Introduction

44Parallel Processing

44Workflows/Behavior Modeling

45Actionable Oriented Event Management

46Gaps in the NcKL Centric Strategy

46Introduction

47Closed and Centrally Controlled Source

47Open and Flexible Language Syntax

47Top down Rules Files Language Culture

48“NMS Tool Centric” verses “Vendor Centric Rule Creation”

48Low Priority of NMS FM among Vendors

49Conclusion

50The Problem: Rules File Language “Function over Fashion” Issue

53The Solution: Applied Configuration Management

56Anatomy of the Rule File Language

56Introduction

57Rules File Atomic Components: Data Structures and Fx Statements

57Introduction

60Root Rule File Assignments

60Trailing Assignments After an If Statement

62Empty Else Clause

63Summary

63Rules File Relationships Between Atomic Components

63Introduction

63Independent Fx Relationships

64Representing Rules Files as an Equation of Independent Fx Statements

66Co Dependent Fx Relationships

67Summary

67Tabular Visualization – Human Centric Probe Rules

67Introduction

69Equation and Tabular Rule Clarity Benefits

69Metric - Total Possible Paths and Path Statistics

73Metric - Rules File “Cost of Ownership”

75Metric - Holistic issues: Field, Variable, Property, and Other (Details(),Log(),Update())

75Full Visualization – Computer Centric Probe Rules

75Select business processes modeled by the data

76Determine the granularity (known as grain) of the data

76Model the data relationships

77Populate the remaining details (known as facts) of the data

77Graphical Visualization – The Big Picture

82Summary

83Summary

84Appendix A: General Rule File Statistics

85Appendix B: Field Inventory

55Appendix C: Properties Inventory

56Appendix D: Variable Inventory

82Appendix E: Other Inventory

83IMPORTANT NOTICE

84About NMS Guru

84Author

Tables and Figures

1Figure 1: Example of an Event List

2Figure 2: Example of Typical Single Tier Netcool Deployment

4Figure 3: Three Stages of Rule Decoding

6Figure 4: Rules Effective Lifespan Formula

10Table 1: Severity, Type and Expire Time Distribution

11Table 2: Severity, Type and Expire Time Distribution (Continued.)

14Table 3: Four Condition Error Types

14Table 4: Five Assignment Error Types

25Table 5: Index of Mttrapd Case Study Data

27Table 6:Legacy to NcKL Conversion Rules

28Table 7:Legacy to NcKL Conversion Rules - continued.

29Table 8:Legacy to NcKL Conversion Rules - continued.

30Table 9:Legacy to NcKL Conversion Rules - continued.

31Table 10:Legacy to NcKL Conversion Rules - continued.

37Table 11: Field Assignment Counts By Path (literal)

38Table 12: Field Assignment Counts By Path (literal) - continued.

38Table 13: Field Assignment Counts By Path (percentage).

39Table 14: Field Assignment Counts By Path (percentage) - continued.

40Table 15: Field Assignment Counts By Path (percentage) - continued.

50Figure 5: You are here – Rules File location within the language domain

54Figure 6: You are now here – Best Practices relocates Rules Files’ location within the language domain

57Figure 7: Three Stages of Rule Decoding

58Table 16: Rules File Language Elements – Flow Control

58Table 17: Rules File Language Elements - Assignments

64Table 18: Four Independent Fx Relationship Operations

66Table 19: Five Co-Dependent Fx Relationship Operations

68Table 20: Example - Tabular Rules

71Figure 8: Fx Path Distribution

73Figure 9: Example of Fx Statement Flow

74Table 21: Inventory of Fx Statement Relationships

76Figure 10: 4D Temporal Tabular Visualization

79Figure 11: Graphical Rule Representation

79Figure 12: Graphical Rule Representation - Adding Fx Heads

79Figure 13: Graphical Rule Representation - Perfected

82Figure 14: Graphical Rule Representation (Fx relationships)

83Figure 15: You are here – Rules File location within the language domain

83Figure 16: You are now here – Best Practices relocates Rules Files’ location within the language domain

84Table 22: Example – MTTRAPD General Rules Files Statistics

Introduction

What does the Tivoli Netcool Suite do?
IBM's flagship for fault management is Tivoli Netcool suite. It consists of several products working together to shuttle events from disparate sources into a common database for display, reporting, and analysis.

[image: image3.png]- Netcool /OMNIbus Event List

Ele Edt Vew ferts Took Help

R EIEE 1| Qo T

Node G e

V857210 | potTepErifrcsenceDevice | Serstioiddrst: A doicois sbsrt o hs ben emoved
wgs37-210 | SunHwTrapPowerSupplyError | PowerSupply component /5Y5/PS0/PWROK has detected an eror [
wgs37-210 | SunHwTrapPowerSupplyError | PowerSupply component /SY5/PS1/PWROK has detected an eror [
woot001 | surPlSiateChangs Device C/FANBDY F2/SERVICE OperaionsSttu hs changed
o001 | surPltdehange Device CH/MB/CHPU/BF/CHU/DO/SERVICE Dperaiond Status e
o001 | surPltdehange Device GH/SYS/PS_FAULT Gpeatonsl Stelus has changed o s
o001 | surPltdehange Device CH/SYS/SERVICE Dpsraonsltaus has changed o dsabe
woet00T | surPlitdehange Devics CHISYS/TEMP_PAULT Operaios Sttus hes charged o &
s 2 o BT N B NEeTs e e TR PRSI
VSST2I0 | SurTipPeDSEr | e Enc Addtonl e ysembootnieed

1sS7210 | SurbuTipPcDSETa | FicS Ena Addtonel . Molheboat ilzaion

wgs37-210 | petTrapPowerSupplyState. | Sensor psD.pwrok : Power Supply is connected to AC Power.
wgs37-210 | petTrapPowerSupplyState. | Sensor ps1.pwrok : Power Supply is connected to AT Power.

«

R

o rows modied 12]11/2007 2:42:25 P oot ucoms [PRI]

Figure 1: Example of an Event List

The events flow through the system as follows. Each probe receives events from a particular source, the most common being syslog and SNMP traps. Using detailed instructions contained in rules files, the probes convert the information about the alarm into a common format and insert them into the object server database. Many applications pull the events from the object server for reports, display, data redundancy, or further additional analysis.
[image: image4.jpg]=2 £

EventList NelcoolOMNIbus.

PR - .o

Probe

e Gateway Helpdesi

ST L4 »

RDBMS

Gateway
Gateway

by

|

ﬁ; Objectserver

il NCOMS_B.

Figure 2: Example of Typical Single Tier Netcool Deployment

Together the probes, gateway, and objectserver are called Omnibus. (NOTE: Webtop, the very fat GUI front end will be sucked into the Omnibus suite in the near future.) The Omnibus collectively acts as an event processor by effectively:

· Consolidating events from multiple NMSs into a single display screen.
· Deduplicating multiple events to a single device and/or service centric event and in the process drastically reducing the number of events.

· Normalizing the disparate events into a consistent presentation while preserving the events' meaning.
· Correctly stressing an event’s individual importance and/or urgency relative to other events displayed regardless of the disparate event sources.

The workhorse of Omnibus is the probe. The probe uses rules files along with lookup files to normalize events and populate the Omnibus database. The rules files are little more than a glorified if-then-else logic with embedded field and variable assignments augmented by lookups against single keyed, tab delimited flat files. The simplicity of the language belies the complexity that evolves out of an ever expanding, loosely governed volume of rules files. Currently the official NcKL SNMP trap rules are at over one million lines.
Purpose of this Document

This paper analyzes Tivoli Netcool’s event processing methodology and asserts that the greatest threat to the useful lifespan of the rules files is natural entropy. Rule entropy is enabled by:

· Configuration Flexibility via the rules files programming syntax.
· Code obfuscation:

· The uncoupling of knowledge management, which describes the meaning/purpose of the rules files code.
· Poor presentation means for both meaning and function of the rules.
· Lack of audit ability of the rules.

To combat entropy and extend the useful lifespan of the rules files, additional best practices are proposed. Due to depth of the material, the best practices, case study, and future direction of event management is presented first. For those with a deeper interest the argument, theory, and proof behind these best practices are presented later in the paper. Specifically the paper discusses:
Best Practices Discussion:

1. Additional Best Practices

Based on the analysis of the paper, this section presents tactical oriented, best practices that offset the strategic weaknesses and emphasize the strength of the rules files’ approach.

2. Case Study: Mttrapd NcKL Conversion

Investigates a case study where legacy rules were converted to NcKL standards using some of the best practices discussed in this document.
3. Future of Event Management

Points to trends in Event Management that may affect the future of the rules files.

Deeper Material:

4. Gaps In The NcKL Centric Strategy

Discusses the gaps in a pure NcKL Centric Strategy and why Additional Best Practices are needed to fight entropy and provide clarity of purpose.

5. The Problem: Rules File Language “Function over Fashion” Issue
Argues that "Function over Fashion" approach of the rules files is the primary cause of increased enthropy which leads to early demise of the Tivoli Netcool solution.
6. The Solution: Applied Configuration Management

Describes how automated/manual language restrictions can best fight enthropy and extend the life of the Tivoli Netcool solution.
7. Anatomy of the Rule File Language and Rules File Relationships Between Atomic Components

Analyzes the anatomy of the rules files language to illustrate the theoretical “function over fashion” approach and the strategic weaknesses and strengths of this approach.

8. Tabular and Graphical Visualization - Human Centric Probe Rules

Demystifies the rules in three stages

Stage 1: Normalized rules

Stage 2: Tabular and graphical representation of the rules files, which renders holistic features and logic errors more clearly.
Stage 3: Analyzed and visualized rules where specific aspects of the rules files are identified and highlighted.

[image: image5.png]Rule Meaning Rendering

Stage 1 Stage 2
Rules Files
TTRAPD
Equation

((1+2)x(3+4)..)

Rules Table

EITTE

Cond1 Cond?... @Severity @Summary .. $1 $Kdentifier... 5Prop... Update Log|

Stage 3

Visualization
JPG Image
Relational Map

¥ Datawarehouse

Etc.

Auto Error Detection
Missed field assignments
Reassigned fields
Co-dependence

I+ Overlapping clauses
Etc...

Figure 3: Three Stages of Rule Decoding

Through this process this paper will relay a set of tactical best practices as well as the underlying theoretical basis to these best practices.

Intended Audience

This document is directed toward managers and engineers tasked with creating, maintaining, and/or using a distributed NMS architecture as well as those specifically tasked with probe rules file administration.
Additional Best Practices

Introduction

One key consequence of the flexibility endowed in programmable rules files is an accelerated rate of entropy. As a result normal rules maintenance will quickly erode the usefulness of the rules files. Through a program of best practices, the effects of entropy can be minimized and the useful lifespan of the rules files extended.

The useful lifespan of the rules files are affected by five primary areas:

· Natural entropy rate (E)

· Language flexibility (L)

· Documentation/clarity gaps (D)

· Rules change rate (R)

· Size of rules files (S)

These five areas multiplied together are inversely proportional to the rules files effective lifespan.

[image: image6.png]Constant
Effective LifeSpan= —————
ExLxDxRxS

Figure 4: Rules Effective Lifespan Formula

To combat these issues additional best practices can be applied. These best practices naturally break into four general areas based on the mediums through which they operate:

· Tool architecture

· Knowledge management

· Business processes

· Organizational structure.

This section explores best practices in each of these areas.

Tool Architecture

The tool architecture will usually include much more than the Omnibus suite with its object server, probes, and gateways. However, for the discussion of this best practices paper the discussion is limited to the rules files’ syntax.

The later sections of this whitepaper will explore an alternate syntax to the rules files that strip away non beneficial loose syntax. That is, the section illustrates how aspects of the rules files' flexibility serves convenience of coding at the expense of improved efficiency and clarity. There are six primary strategies in keeping non productive code variance to a minimum:

1. Keep Consistent Programming Patterns

2. Manage co-dependent Fx statement relationships

3. Code as Efficient as possible

4. Code audit, debugging and tracing capabilities

5. OPTIONAL: Implement Simple Policies within Probe Rules instead of Impact and ObjectServer Automations
6. OPTIONAL: Automate Configuration Management

These best practices restrict code flexibility in order to increase clarity and efficiency both of which will extend the useful lifespan of the rules files.

Keep Consistent Programming Patterns

Introduction

The rules file consists primarily of nested IF-THEN-ELSE statements with a variety of assignments. Often the same types of problems are encountered over and over again within the rules. As a result large and small patterns emerge which represent the best practices at tackling a particular problem. Some of these patterns are universal across all probes, while the larger patterns are dependent on the type of events being converted and thus are specific to each probe. Being conscious and applying these patterns consistently can greatly reduce the variance of the code. Reducing variance can not only reduce the possibility for errors but add to the clarity of the rules. This section discusses several common patterns used as part of best practices.

1. Comment Out Unused code sections

2. Segregate Code by Purpose

3. Complete Lookup File Abstractions

4. Consolidate Field Assignments

5. Tighten vague rules and Document and Attach To Business Processes
Comment Out Large, Unused Code Sections

Consistent organization and application of coding patterns is the primary way to fight entropy. However, often large sections of code serve no purpose and can affect efficiency. By commenting out, rather than deleting these code sections, both the holistic structure and efficiency can be preserved.

Within NcKL there are several examples where commenting out a few lines can greatly reduce the complexity. In the case of mttrapd NcKL rules files part of the standard format are two include files for user and advanced specific rules. Often these include files are empty. In these cases they can be commented out to reduce the scope.

Segregate Code By Purpose

Another way to keep entropy at bay is to segregate code by purpose. Specifically, there are three common usages:

· NcKL deviation and additions

· Event population verses event enrichment

· Quick code hacks, bug fixes, etc.

Almost all code changes will be deviations from or additions to the NcKL files. Though there are many inadequacies within NcKL it is often best to retain the overall structure in order to simplify migration when or if the NcKL rules files change.

Often the changes to the NcKL files involve either nuances in event population or event enrichment. These two functions have different drivers. As a result it is best to segregate out and aggregate together these nuances by purpose within the context of the overall NcKL structure.

Finally due to business and political pressures some changes will be done immediately and without regard to the overall structure. Time and funding is almost never provided to go back and revisit these changes. Too often these changes are unmarked and quick fade from the organization’s collective memory. Thus, finding a way to both tag these changes to incident or problem tickets as well as having a standard way to aggregate and segregate the changes where ever possible is critical.

Complete Lookup File Abstractions

Besides dividing the rules into hierarchal include files, the other primary method of abstraction is to store values for associated database fields in lookup files. Unfortunately NcKL is implemented poorly in this area. There are five primary rules to follow when creating lookup files:

· Avoid redundant variable declarations.

· Make sure all related fields are included in the file.

· Flag exceptions that result in a failed lookup.

· Make sure all assignments to the fields are via the lookup file.

Avoid redundant variable declarations.

The first step is to avoid redundant variable declarations. The goal of the lookup files is to abstract related field assignments into a common file based on a key. However, there is a tendency in NcKL to assign temporary variables in case the lookup fails. This defeats the purpose of the lookup files and accelerates the rate of entropy. Rather than hiding from the “pain” of the omissions, it is better to police and correct the omissions for the long term health of the fault management solution.

Make sure all related fields are included in the file.

The second step is to make sure the lookup files are functionally complete. For example, the most commonly used lookup files within NcKL are the Severity tables. These tables use an EventId to specify the Severity, Type, and Expire Time for the event. The EventId also defines the type of event and thus it would make sense to include AlertKey and AlertGroup. It might even be argued that the Identifier and Summary could also be included in this table. Having all the fields involved would greatly simplify the rules and their complexity.

Flag exceptions that result in a failed lookup.

Always use a default assignment that enables a business process to follow up and correct the omission. The most common is to log and error in the log file. The log file is periodically reviewed for omissions and bugs issued to update the lookup file. Another more immediate method is to update a field of the object server (i.e. Error) indicating the omission for immediate follow up by first or second level support.
Make sure all assignments to the fields are via the lookup file.

Applying rules completely is one of the most basic tenants of configuration management. Unfortunately, NcKL does not always follow this rule. In particular, in cases where there are only a handful of traps, many mttrapd rules files use inline coding for the severity, type, and expiry timer rather than abstracting these codes out into an alarm include file. These types of exception, although simplify coding, reduce code structure consistency which leads directly to increased entropy. By using multiple patterns not only does the variance create new structures where errors can hide, it also obfuscate the data. For example, in the case of a NcKL mttrapd deployment the following simple script can be used to analyze the distribution of Severity, Type and Expire Times:

grep -E -v -h "^#" *.sev.snmptrap.lookup | cut -f 2,3,4 | sort | uniq -c | sort -nr
	Count
	Severity
	Type
	Expire Time

	4745
	2
	1
	0

	2883
	3
	1
	0

	2071
	1
	2
	0

	1443
	4
	1
	0

	1310
	2
	13
	1800

	806
	5
	1
	0

	440
	2
	12
	0

	374
	2
	13
	0

	339
	2
	1
	0

	286
	1
	1
	0

	129
	4
	1
	0

	115
	3
	1
	0

	41
	2
	13
	0

	34
	5
	1
	0

	23
	2
	11
	0

	23
	1
	2
	0

	9
	2
	2
	0

	5
	2
	13
	900

	4
	4
	1
	1

	4
	2
	1
	1

	4
	2
	0
	0

	4
	1
	2
	1

	2
	4
	13
	0

Table 1: Severity, Type and Expire Time Distribution

	Count
	Severity
	Type
	Expire Time

	2
	4
	12
	0

	2
	2
	13
	7200

	1
	d
	13
	1800

	1
	5
	11
	0

	1
	4
	11
	0

	1
	4
	0
	0

	1
	3
	12
	0

	1
	3
	0
	0

	1
	2
	13
	86400

	1
	2
	13
	28800

	1
	2
	13
	1800

	1
	2
	12
	0

	1
	2
	1
	3600

	1
	2
	1
	1800

	1
	1
	12
	0

	1
	1
	11
	0

	1
	1
	1
	0

	1
	1
	0
	0

Table 2: Severity, Type and Expire Time Distribution (Continued.)

Though the information returned is useful, it isn’t complete since not all the MTTRAPD rules files use the severity lookup tables.

Consolidate Field Assignments

Another very simple way to keep consistent abstractions throughout the rules files is to consolidate assignments. This applies most notably to the Identifier field. For example, the mttrapd rules consistently use the same set of fields, delimitated by a space for the value of the Identifier. It is cleaner and more efficient to assign the Identifier once at the end of the rules and only make an explicit assignment if it differs from this default. The common convention for these overriding values is to use a variable with the same name as the field. For example, in the case of the field @Identifier the variable $Identifier should be assigned to the override value. At the end of the rules files a check is performed to see if this variable is non-null. If so, it is assigned to the @Identifier. This is an example of where it makes sense to use a co-dependent function.

Tighten Vague Rules and Document and Attach to Business Processes
One of the leading causes of entropy is vagueness in the standards. For example, Severity and Type can often take on different values depending on the circumstance. In the case of unknown events Type could be set to 0 or 1. For resolution events Severity could be set to anything above 1. Further, if a customer decides to use the rules files to perform GenericClears the resolution event may have Severity set to 0 and the Identifier mirroring the related problem event. Obviously, not having clear rules for what to do in these cases can wreak havoc on the consistency of the rules files and greatly shorten the lifespan of the entire solution. However, this isn't enough. Additionally business processes need to be in place to validate that these policies are followed. Peer reviews and automated configuration checks are two examples that can be used to enforce that such standards are followed.

In the case of log(), and details() having consistent rules attached to specific business processes is crutial. For example, having a standard policy regarding whether specific variables are details() or not or when values are log()ed can greatly assist the methodology used when debugging issues. For example, it is always a good idea to log() events that are not recognized by the rules. However, this is only effective if there is a business process in place to periodically review the exceptions.

Manage Co-dependent Fx Statement Relationships

Introduction

Fx statements and co-dependent statements are explored in depth in the subsequent theory sections of this document. A short description will suffice for reviewing co-dependency in reference to best practices. Co-depenency exists between two clauses of any two if statements if they update the same fields, variables, or properties. As a result the order of the clauses can change the field assignment values. The next section, Introduction to Fx Statements, defines Fx statements and co-dependent relationships in more detail.

Introduction to Fx Statements

An Fx statement consists of a condition (nested or not) and its associated assignment. This is best visualized via a simple example:

If ($Node = “D1”) {
\
 @Node=”D1”
| FX statement "a"

 Log("Node=D1")
|

/
} else {
\
 @Node=”D2”
| FX statement "b"

 Update(Node)
|
}
/

If ($Location = “Here”) {
\
 @Node=”Austin”
| FX statement "c"

 Details($Node)
|

/
} else {
\
 @Node=”Folsom”
| FX statement "d"
}
|

/
This code is translated into the following Fx statements and equation.

a: ($Node = “D1”) { @Node=”D1” Log(Node="D1"}

b: ($Node != “D1”) { @Node=”D2” Update(Node) }

c: ($Location = “Here”) { @Location=”D1” Details($Node)}

d: ($Location != “Here”) { @Location=”D2” }

Equation: (a+b)*(c+d)

In the equation the '+' represents the parts of the if-elsif-else clause. The '*' represents two sequential if clauses nested or otherwise. The '(' and ')' are used to override the precedence of the relationship.
If we wanted to represent this code differently but with the same meaning, we could use basic algebra and change the equation to:

Equation: a*c+a*d+b*c+b*d

A quick expansion of this equation back into the original code will show its equivalency. No meaning is lost or altered. The field assignments remain consistent despite the drastic change to the file. (This is discussed in much greater depth in the later theory sections of this white paper.)

Also in this particular case we can reorder the Fx statements and retain the same meaning as well:

Equation: c*a+d*a+c*b+d*b
But what would happen if we updated two of the Fx claues to update the same field, variables, or property? This is best shown in an example:

b: ($Node != “D1”) { @Node=”D2” }

c: ($Location = “Here”) { @Node="D3" + @Node }

Since the assignments are shared, the order of the statements becomes important. As a result the new equation listed above no longer has the same meaning as the previous equation. The "sharing" of assignments is what makes two Fx statements co-dependent. Co-dependency is a leading cause of entropy within the rules files and should be eliminated where possible and controlled and documented everywhere else.

Co-dependent Errors
Though many kinds of logical errors are difficult to identify without intimate knowledge of the data, several kinds of errors are related to the syntax of the rules language. These syntax derived issue can not only be detected, but auto corrected. Many of these issues arise from the underlying weaknesses in co-dependent relationships among the Fx statements. These errors occur either within the conditions or within the assignments. Conditions are the gateways to the assignments of Fx statements. There are three types of error that can be programmatically detected as described in the following table:

	Range
	Reference
	Field
	Variable
	Property
	Description

	Overload
	
	X
	X
	X
	Overlapping conditions within same IF-ELSIF-ELSE / SWITCH clause. These are ambiguous conditions such as ($var1>4) and ($var1>6.) In the case of $var1=8 either condition could be true and thus order matters. In some cases an earlier clause can make a later clause never true such as ($var1>0) and ($var1 =5.) This also includes overloads along the same path where a descendant Fx clause covers the same condition.

	Omission
	
	X
	X
	X
	Gaps in condition coverage where specific or range of values are not specified. This includes “cousin” Fx clauses that should cover the same ranges.

	
	Reference Before Assignment
	X
	X
	X
	Condition reference to a variable before its assignment is made. (Note this does not apply to event populated variables via the probe.)

Table 3: Four Condition Error Types

	Assignment
	Referenced
	Field
	Variable
	Property
	Description

	Unassigned
	Unreferenced
	X
	
	
	Fields in database not populated by rules file for a particular path through the rules.

	Unassigned
	Referenced
	X
	X
	X
	Uninitialized field, variable, and property used as reference in another assignment for a particular path through the rules.

	Reassigned
	Overload value
	X
	X
	X
	Multiple assignments for the same field, variable, property that do not build on one another along the same path. (NOTE: Ok if channeling through temporary variable.)

	Reassigned
	Value building
	X
	X
	X
	Multiple building assignments spread across multiple Fx expressions along the same path. (NOTE: Ok if used due to a lack of looping within the rules.)

	
	No field referenced
	.
	X
	X
	Assigned or referenced variables and properties not used in any field assignments for a particular path through the rules.

Table 4: Five Assignment Error Types

A second type of error involves assignments within the rules files. The overall mapping of assignments within the rules files is to take variables, properties, and fields and through various operations eventually update fields within the object server. Five different kinds of failures can be programmatically detected in this process:

By inventorying which assignments and conditions a particular field, variable, or property participates in, each of these issues listed above can be identified.

Limit co-dependent Fx statement relationships

The primary tactic in managing co-dependent Fx relationships is to eliminate them where possible. There are four primary exceptions where elimination results in greater, rather than reduced, complexity:

· Segregated Code by Purpose. For example, probe rules commonly apply both initial event population and enrichment. Often enrichment will modify or override fields set during the initial population. Combining these into a single set of rules breaks down structures that ward off entropy. Thus, from a high level the code should be segregated based of the different purposes of the code.

· Temporary variables Namespace – Due to the scope of the rules, having unique variables for every single nuance can pollute the name space and make it unmanageable. Often reusing variables used to perform calculations and string manipulations can simplify and make the rules files more clear. However, care must be taken to make sure these variables are initialized such that they cannot be polluted by previous values even if the section of code is moved.

· Universal Quality Checks – Multiple authors write rules to assign values to the same fields. As a result, it is wise to have universal checks to detect field overruns and other common errors. For example , the Identifier is usually is assigned based on a collection of variable information. It is often impossible to tell if these values will exceed the size limit of the field. It is a good idea to have a section of code to detect the issue, notify the administrator, and take corrective action.

· Effective Looping – One efficiency measure that impacts flexibility within the rules is the lack of any looping construct. As a result, the only way to perform looping is by explicitly nesting Fx statements to slice off iterative parts of the problem. As a result these co-dependent constructs are necessary.

There can be additional areas where co-dependent relationships need to exist. However, whenever possible they should be avoided because they will have unintended consequences in the future.

Channel co-dependent Fx statement relationships through variables

In cases where co-dependent Fx statements do exist, they should be channeled through a variable with the same name as the field. This signals the purpose and use of the variable throughout the program. This approached is currently used within NcKL for universal quality checks described above. For example, the $Identifier is assigned through out the mttrapd files only to be assigned to the @Identifier at the very end of the snmptrap.rules file. This also simplifies some checks. For example, a check right before the @Identifier assignment can be made to validate if the $Identifier variables is under 255 characters in length. If an overrun is detected, a log to the log file or an error assignment to a field can be made.

Document co-dependent Fx statement relationships

Besides eliminating co-dependent Fx statements, the next most important rule is to document where they are either in source control, or in line comments. This will not only flag potential issues with future changes, it will also indicate that if a co-dependent relationship is not marked by comments, then it is newly discovered.

Summary

Co-dependent relationships compromise the longevity of rules files by greatly increasing the complexity and obscuring the meaning and impact of the rules. As a result, reducing the number of co-dependent Fx statements and managing tightly those that remain is critical to the health and longevity of the rules.

Code As Efficiently As Possible

The next best practices Tool Architecture methodology is to code as efficiently as possible. There are five specific tactics in this area:
1. Use simplest, most concise language vocabulary

a. Favor SWITCH statements before IF-ELSIF-ELSE statements.

b. Favor in descending order: MATCH, NMATCH, REGMATCH.

2. Omit non-impacting conditions

a. Omit conditions that are always false; use comments instead to document range of values

b. Omit empty conditions; use comments to document why.

3. Optimize 1 - simplest, 2 - minimum number, of Fx statements

4. Factor out common assignment

5. Identify and purposely discard unactionable events

6. Push assignment as low in the stack as possible

Use simplest, most concise language vocabulary

Whenever possible use the most specific language vocabulary that can accomplish the job. The both renders the code in the most efficient pattern as well as provides limited self-documentation in that the purpose of the coder is more clear. The two most obvious applications are:

1. Favor SWITCH statements before IF-ELSIF-ELSE statements.

2. Favor in descending order: MATCH, NMATCH, REGMATCH.

Omit non-impacting conditions

When chosing between being complete or concise on language structure, chose concise plus comments. Omit conditions that do not impact eventual field assignment. Howver, make sure to document why the condition can be omitted. This will inform future coders of the intent of the omission. The two most obvious applications are:

1. Omit conditions that are always false; use comments instead to document range of values

2. Omit empty conditions; use comments to document why.

Optimize 1 - Simplest, 2 - Minimum number, of Fx statements

In particular, Fx statements can have compound conditions. For example

If (($Node = “D1”) && ($Location = “Here”) {
 @Location=”D1”
 @Node=”D1”
} else if (($Node != “D1”) && ($Location = “Here”)) {
 @Location=”D1”
 @Node=”D2”
}

This clause can be represented by the equation:

1 + 2
However, the same code could be written simpler by factoring out the ($Location = “Here”) clause into a separate Fx statement as well as converting the explicit ($Node != “D1”) into an ELSE statement:

If ($Location = “Here”) {
 If (($Node = “D1”) {
 @Location=”D1”
 @Node=”D1”
 } else {
 @Location=”D1”
 @Node=”D2”
 }

}

This clause can be represented by the equation:

1* (2 + 3)
This terser code conveys better the meaning of the statements. In general the more succinct and segregated the condition clause of a statement is, the clearer and more efficient the code.

Factor out common assignment

Many assignments occur throughout large sections of the rules files. Where possible these should be factored out into an outer Fx statements. Two common examples include: @Class, @Agent, and @Type.
In the case of @Agent and @Class within the context of the mttrapd probe the values for these fields are synominous of the originating MIB. Having one assignment at the top of the include file is simpler than repeating the assignment through out the file.
In the case of @Type exception events not handled by the rules can be labeled as problems regardless. As a result @Type can be defaulted to the value 1.
Identify and purposely discard unactionable events

In any fault management solution the primary way to maintain efficiency is to identify and discard unnecessary events as early as possible. This not only releaves the load on the end-to-end solution, but enables exception event management. That is, any unidentified event that exits the system is an unidentified event since all unactionable events are proactively discarded. In short:
1. Discard meaningless events immediately

2. Discard inactionable events after historical event recording or immediately if no history event recording is in the solution.

3. Any event that fall through the rules are known to be unidentified (based on 1 and 2.) These events should be logged and business processes in place to periodically review the log, open bugs where appropriate for eventual rule updates either to consciously discard or to process.
Push assignment as low in the stack as possible

A collary to the previous best practice is to assign fields as early as possible. For example, the Generic Clear automation often can be replaced by careful field assignment. By assigning the Identifier of the problem and resolution to the same value and by setting Type to 2 and Severity to 0 for the resolution, the Generic Clear automation can be bypassed and the event will still be picked up by the DeleteClear automation. Note the event cannot simply be discarded since the problem event would then still remain in the object server.
Code audit, debugging and tracing capabilities

One of the primary reasons for rules early demise is a lack of visibility. The table and graphical views into the rules files are extremely helpful but they cannot provide all the insights needed. For although they can analyze issues within the rules they cannot weight those issues according to how often events are affected or how important the devices attached to those rules are to the business. Four primary methods of auditing avail themselves:

· Use existing tags

· Infuse Fx Tags

· Always Flag and Correct Event Exceptions

· Funnel "Details" through Specific Fields

Use Existing Tags

The case study in the last section of this paper illustrates an example of using existing tags. In this case the enterprise ID was used to audit what sections of the mttrapd rules was used.

An audit of the historical database found that 78% of the mttrapd rules files could be discarded since no traffic ever came from those types of devices. Further, an additional 13% of the files could be discarded because no traffic was found in the previous year. Looking at missed events, it was found that 5% of the enterprise IDs had no associated files, but they represented only 5% of the traffic and thus took a lower priority on the project list against other more critical issues. The result of this brief audit was that 90% of the NcKL files could be discarded without impacting the service provided to the customer, while the "missing" rules files could take a lower priority against other projects stacked in the to-do list.

Infuse Fx Tags

A more aggressive and granular form of auditing can be obtained by tagging each of the Fx statements an event flows through. For example, a field can be added to the alerts.status called Audit. In every Fx statement a unique numeric identifier could be appended to this field, delimited by a ';'.

If ($Location = “Here”) {
 @Audit = @Audit . ';19212'

 @Location=”D1”
 If (($Node = “D1”) {
 @Audit = @Audit . ';19213'

 @Node=”D1”
 } else {
 @Audit = @Audit . ';19214'

 @Node=”D2”
 }

}

This results in every event having its path through the rules file explicitly described. This makes auditing rules based issues trivial and no longer a guessing game. However, it has obvious load implications - as much as 20% additional CPU load. Often a PERL wrapper script that strips out these field assignments for production can be used to keep the code efficient but enable low level audit capability for development, test, and staging environment.

Always Flag and Correct Event Exceptions

A fault management solution is only as good as its ability to perceive issues. However, the issues it does see increase the workload on an organization. As a result, blind spots tend to proliferate in the monitoring solution. Only by aggressively seeking out blind areas can the organization keep the monitoring solution from becoming little more than a screen saver. However the damage from blindness progresses slowly and is often invisible to an organization. Though it will eventually kill with certainty any monitoring solution, few have the right organizational structures, business processes in place to correct the damage.

In the case of the rules files one of the key blind spots is unhandled events. A suprising number of fortune 500 companies discard events that the rules do not expect or parse correctly. For those that do log exceptions, most do not periodically review and either consciously discard or correctly parse what falls through the cracks. Finally, for those new events that are processed almost no one attaches actionable events to prevent the events from just cluttering the display. The problem is surprisingly difficult to solve - mostly due to the slow death nature of the problem and a lack of support and understanding from management and the organization as a whole.

Detail Specific Variables

As is well known detailing all variables for all events will bring the rules engine to its knees in most situation. However, sometimes specific variable information can be valuable. For example tagging the enterprise ID, generic trap, and specific trap number for the mttrapd events can provide useful clues if further debugging is needed in production. Channeling these variables through specific fields of the alerts.status table makes this information much more accessible and easier to display.

Maximize Event Work in Rules

The probes are the first stop in the fault management system. Any events passed onto the Omnibus object server places a strain on all the other components. Thus, if possible events should be correlated and/or removed as early as possible. The passive, single event focus of the probes limits its abilities, but still much can be done. There are three particular instances where putting the probes to work can be very successful:

· Event Deletion

· Simple Policies

· Correllations

Event Deletion (verses Alert Deletion)
Event deletion in the Object Server has a couple concerns at the probe level. (This differs from the alert deletion discussed early that only concerns the specific instance of the event that the probe is processing. Multiple alerts over time get deduplicated to a single event.) First, the value of an event for historical database purposes is often unknown and thus the event needs to be passed to the object server first before being deleted. Second, if an event already exists in the object server, discarding it in the probe will only get rid of the current alarm. The event will still remain in the object server. In both these cases setting severity to clear and allowing the DeleteClear automation to remove the event is the best approach. If the event is unactionable or otherwise safely ignored, then using the discard() in the probe is the best method.

Simple Policies

With the introduction of persistence in the arrays within the rules multi-event models are available to the probes. As a result, simple policies that used to be available only through Impact or Omnibus automations can now be written within the probe rules. There are a couple caveats to implementing policies this way:

· Event deletion: Often automations such as the unsetting of XinY events require event deletions. Since probes processes only an event at a time, changing previous alerts even if they are deduplicated against the same event is impossible. The alternative is to set a flag via an alerts.status field that triggers an automation in the object server to perform the deletion. If possible, the best approach is to set the severity to clear and let the deleteclear automation remove the events.

· Probe Restart and State Persistence: Although the arrays persist even through a rules reload via a HUP signal, if a probe dies, even with probe failover in place the array information is lost. As a result the policy will return to an initialized state and the current state information stored within the arrays will need to be rebuilt.

· Code Loops: They don't exist. So in the case of making an XinY policy with a sliding window, a nesting of X if statements is required to validate each recorded alert within the array. In the case of a fixed XinY policy, this issue doesn't exist.

Often these caveats are not a big issue especially in the case of the XinY policy. If so, the implementation is rather trivial. One example implementation with a non-sliding Y window is:

IF XinY SET, NOTHING TO DO. (NOTE: THERE IS NO XinY UNSET in this logic)

@XinYXValue=10 ## XinY Watermark

@XinYYValue=10 ## XinY Watermark

if (!(match(IsXinY[@Identifier],"1"))){

INTIALIZE ARRAY (NOTE: Taking the MAX in the dedup automation can prevent a restart from clearing the XinY state)

 if (match(X[@Identifier],"")){
 $tempdate = getdate
 Y[@Identifier] = timetodate($tempdate,"%D %T")
 X[@Identifier] = "1"
 CurrX[@Identifier] = "1"
 @XinY=0 ## OBJECT SERVER MEMORY
 IsXinY[@Identifier] = "0" ## PROBE MEMORY
 $State = "XinY Initialize."

 ## UPDATE X TALLY, AND CHECK IS XinY ASSERTED (NOTE: NO XinY RESET IN THIS LOGIC.)

 }else {

 CurrX[@Identifier] = int(CurrX[@Identifier]) + 1
 $dx = int(CurrX[@Identifier]) - int(X[@Identifier])
 $dy = getdate - datetotime(Y[@Identifier],"%D %T")

 ## INSIDE TIME WINDOW
 if (int($dy) <= @XinYYValue) {

 ## AND THRESHOLD CROSSED

 if (int($dx) >= @XinYXValue)) {

 $State = "XinY Tripped."
 IsXinY[@Identifier] = "1" ## So Probe as well as Object Server knows
 @XinY=1

 ## AND NOT CROSSED THRESHOLD

 } else {

 $State = "XinY: Not tripped."
 }
 ## TIME WINDOW EXPIRED

 } else {

 Y[@Identifier] = timetodate(getdate,"%D %T")
 X[@Identifier] = 0
 $State = "XinY: Window expired, reset"
 }
 }

 # DEBUGGING

 $Y = Y[@Identifier]

 $X = X[@Identifier]

 $CurrX = CurrX[@Identifier]

 details($Y,$X,$CurrX,$dx,$dy,$State)

 @XinYDebug = $State
 update(@XinYDebug)

}
Correlations

Many correlations normally done through Object Server automations or Impact can be done at the probe level by carefully selecting the identifier. Two of the largest impacting correlations are:

· GenericClear

· Syslog and Mttrapd Correllations

The problem and resolution events can be viewed as two different states for the same type of events. Keeping the Identifier the same as the problem event but updating the Summary to resolution text, Type to resolution, and Severity to Clear will enable the deduplication and deleteclear automation to perform the same functionality as GenericClear. The deduplication automation may need to be correctedto update these three fields but the overall performance of the system will be improved in most cases.

Another simple correlation is between probes. By removing Manager and other probe distinquishing fields from the Identifier many alarms can be correlated across disparate probes. For example, the ISM, syslog, and mttrapd all may record a link down event. If parsed correctly all three can deduplicate to the same event by simply making the Identifier identical in all three cases.

Automated Configuration Management

The simplicity of the rules language allows the ability to automate many best practices through configuration management. In particular, rules using regular expressions can be set up to detect whether or not the various rules files are conforming to expected formats and best practice standards. Further, policies can be created to group and report on these rules. Finally, some policies can be enforced by reformatting and correct the rules to reflect what is expected automatically when a change is detected.

Zip Tie and other open source as well as shelf ware products can be modified to perform these actions. However, the initial implementation can be rather expensive and thus the benefits and expense of such a solution should be measured before implementing such a solution.

Business Processes and Knowledge Management

After organizational structure, business processes and knowledge management are the most important aspects in maintaining a healthy NMS solution. In particular the most important elements are:

· Knowledge management

· Implied/Documented meaning and purpose

· Attached comments

· Consistent Programming constructs (i.e. Severity lookup files)

· Inventory control

· Values, devices, etc

· Business Processes

· Source control

· Applied Configuration Management

· Monitoring the monitor

· Business Continuity HA/DR

· Holistic health and performance monitoring

These are self evident and will not be discussed in detail here.

Organizational Structure

Organizational structure more than any other component will determine the success or failure of the NMS solution than any other factor. Like the circulation and nervous system of a living organism, it is the organization that glues the disparate components together. Though this topic is too broad and complex to explore here, the two most common issues will be discussed:

· Top down agendas

· Non-support centric NMS Development

Top Down Agendas.

Any executive driven solution is doomed to fail because the NMS solution and customer base by nature are dynamic and adaptive. As a result, by not having adjustments driven from the bottom up, the organization is driven blindly and will eventually skew the solution far enough from reality that the business will implode.

Non-support centric NMS Development.

Surprisingly enough most organizations do not actively have development engage the support staff. This is despite the fact that development can usually only know the success of their work by talking to support, their customer. Similar to top down agendas, a development team that is blind to customer support is akin to driving blind down a windy road.

Like a windy road this relationship will always become antagonistic without continual maintenance both at a management and staff level. This is because while development is focused on schedules (time), support is focused on quality (customer). These two views of reality are very different. Development will always feel antagonized by support due to slipped schedules. Support will always feel ignored and demeaned by development unless face time and continual communication is encouraged.

Often remote interactions are not enough. This is because 80% of emotional communication occurs through facial expression. For the same reason emails and traffic interaction can go south quicker than meeting room and pedestrian interactions, face time is often required to prevent similar blow ups between groups and people with conflicting agendas. Simple initiatives such as a monthly catered lunch and weekly check-ins can go a long way of maintaining a healthy development to support relationship.

Summary

Organizational structure is the most important element of any NMS solution. However, it is a far too complex topic to discuss here in anymore detail than already presented.

Case Study: Mttrapd NcKL Conversion

Introduction

The paper thus far has presented applied best practices. This section explores a case study where a set of existing mttrapd rules was converted to a NcKL format, merged with the latest NcKL library, and finally extended and trimmed to cover the scope of devices monitored by the production fault and performance management system.

NcKL in many cases is undesirable due to a large amount of entropy that has worked its way into the rules over its ten year evolution. Specifically, inconsistent application of standards and additional programming structures without documentation will accelerate not reduce entropy in many cases. However, in the absence of anything consistent, often a migration to the NcKL rule standards can provide a jump start on functionality, which can offset the cost of rule cleanup and mitigate the risk of an early demise.

NcKL provides standard rules for the most widely used probes: mttrapd and syslog. In this case study only the mttrapd rules were migrated. A PERL program was used to convert the rules file logic into a table oriented equivalent. (This is described in later sections of this white paper.) This conversion provided additional holistic insights into the rules construction. These statistics are provided in Appendices A-E.

	Content
	Location

	General Rules File Statistics
	Appendix A

	Field Inventory
	Appendix B

	Properties Inventory
	Appendix C

	Variable Inventory
	Appendix D

	Other (Log, Details, etc)
	Appendix E

Table 5: Index of Mttrapd Case Study Data

Mttrapd to NcKL Conversion Concerns

As mentioned in the introduction, the benefit of a conversion to NcKL can be elusive to non-existent. In this case study the concerns included:

· The NcKL format is not concrete, much less documented. Thus any conversion would marginally improve standards.

· In general the NcKL code runs around 1,000,000 lines against the proprietary code which runs 100,000. Thus the complexity increases by an order of magnitude.

· The severity lookup file is applied inconsistently and contains only Severity, Type, and ExpireTime even though AlertKey and AlertGroup also require unique specification.
· The mib2rules program generates default values for Severity, Type, and ExpireTime for every entry of the severity lookup file, defeating the consolidation and simplification purposes of the lookup file.

· For the mib2rules program and some NcKL files, the field AlertGroup is not generalized across problem and resolution events, making GenericClear and automation inoperable.

· Rule based GenericClear which is much more efficient than automation based GenericClear is not implemented.

· For the mib2rules program and some NcKL files, the field AlertKey is not specified and needs to be added

· For the mib2rules program and some NcKL files the fields Agent and Identifier are repeated in every sub case even though they are universal assigned across the multiple cases.

· In general the mib2rules program and some NcKL files tend to redundantly assign variables and fields even though these assignments are universal across all the sub cases.

As a result of these issues some values for Object Server fields were consitently taken from the legacy while others were taken from the NcKL or mib2rules generated files. For example, fields such as Identifier, AlertGroup, EventId, as well as log() statements were all taken from NcKL with some modification. On the other hand fields such as Type, Severity, AlertKey, Summary, NodeAlias, and custom fields were all taken from the legacy files, overriding the values provided by NcKL.
Other consistent NcKL structures and conventions were removed. Often the NcKL and mib2rules generated files would assign default variables such as $DEFAULT_Severity and $Default_Type for every specific trap ID. However, by setting these values as well as adding a row to the Severity lookup file eliminated the benefits of abstracting these values to a lookup file. Thus, these default variables were removed.
There are many other conventions that were followed to mitigate and correct the conversion concerns. Some of these concerns were universal, while others were specific to the environment and the organization's businesss practices. Thus the first step in the conversion process was to come up with a standard conversion process that the team would follow.

Mttrapd to NcKL Conversion Process

The NcKL conversion process followed three phases: discovery, standardization, and execution. In the discovery phase a handful of files were converted. In the process a series of rules that applies to that site were uncovered. The team iterated over several files to produce a consistent list of rules. The next step was to standardize and reach consensus on these rules. Once standardized the rules were tested by stepping back over the initially converted files. Finally, the entire set of files were converted. Along the way the tabular view of the rules files provided a holistic, high level view into the rules. Many issues that could not be seen at the ground level became apparent in the tabular view. This set of rules became a living breathing document that evolved into the universal conversion map for the project.
	#
	Name
	Description
	Area
	Src
	Do
	Validation

	1
	New file inclusion
	In snmptrap.rules include lookups, enterprise rules, and sev lookup file. Put in alphabetic order.
	Snmptrap.rules
	
	
	

	2
	File Reference
	Change from $OMNIHOME/probes/linux2x86 => $NC_RULES_HOME
	ALL
	
	
	

	3
	New files
	Set -kk flag instead of default -kkv. Done in eclipse when adding a file by. 1. Copy file to correct directory. 2. Right click on directory and select Refresh. 3. Right click on file and select Team->'Add to CVS.' 4. Right click on file and select Team ->’Change ASCII/binary property’
	Eclipse
	
	
	

	4
	File Naming
	For vendors: <vendor>-<MIB>.include.snmptrap.rules
Example: cisco-CISCO-SLB-MIB.include.snmptrap.rules

For MIBs: -<APPLICATION>--MIB.include.snmptrap.rules
Example: -pingmon--MIB.include.snmptrap.rules

For Standard MIBS: <STANDARD>-<MIB>.include.snmptrap.rules
Example: IETF-BPG4-MIB.include..rules
	ALL
	ALL
	Fix
	

	5
	Generic Clear
	Make sure Type 1 and Type 2 get coded in Identifier
	ALL
	
	
	

Table 6:Legacy to NcKL Conversion Rules

	#
	Name
	Description
	Area
	Src
	Do
	Validation

	6
	NCKL Footer
	Add standard NCKL footer:
+C7:C9 $OS_EventId = "Unknown"
 @Summary = "Unknown Specific Trap Number (" + $specific-trap + ") Received for Enterprise " + $enterprise
 @Severity = 1
 $OS_Identifier = @Node + " " + @Agent + " " + @Manager + " " + $enterprise + " " + $generic-trap + " " + $specific-trap
 details($*)
 }

 ##########
 # Handle Severity via Lookup.
 ##########

 if(exists($SEV_KEY)) {
 [$OS_Severity,$OS_Type,$OS_ExpireTime] = lookup($SEV_KEY, <FILENAME>_sev)
 } else {
 [$OS_Severity,$OS_Type,$OS_ExpireTime] = lookup($OS_EventId, <FILENAME>_sev)
 }
 include "$NC_RULES_HOME/include-common/AssignSev.include.common.rules"

 ##########
 # End of Severity via Lookup.
 ##########

 ##########
 # Enter "Advanced" and "User" includes.
 ##########

 #include "$NC_RULES_HOME/include-snmptrap/<FILENAME>.adv.include.snmptrap.rules"
 #include "$NC_RULES_HOME/include-snmptrap/<FILENAME>.user.include.snmptrap.rules"

 ##########
 # End of "Advanced" and "User" includes.
 ##########

 log(DEBUG, "<<<<< Leaving... <FILENAME>.include.snmptrap.rules >>>>>")
	Bottom
	
	
	NCKLFinalClean.pl

	7
	Hardcoded enrichment
	Add to user.include.snmptrap.rules
	user.include.snmptrap.rules
	
	
	

	8
	NCKL vs Legacy Event Coverage
	1. Reordering the cases in legacy to match NCKL
2. Retaining any legacy cases not handled by NCKL, applying conversion rules where possible.
3. Discard NCKL cases not handled in legacy EXCEPT where addition is obvious or enables Generic clear to work
	
	
	
	

Table 7:Legacy to NcKL Conversion Rules - continued.
	#
	Name
	Description
	Area
	Src
	Do
	Validation

	9
	Process: To NCKL Conversion
	1. Grab from: $OMNIHOME/probes/linux2x86
2. Search for OIDs in Existing rules $NCHOME/rules
3. Find and grab related MIB
4. Rename MIB files to NCKL standard
5. Check MIB in CVS HEAD: Root/OSS/SISA/doc/netcool/mibs
6. Run M2rules

7. Select the easier of 2 or 3
8. Use spreadsheet run standard conversions
9. Note conversion exceptions and email team. 10. Run unit validation checks
11. Run syntax check and run in dev.
12. Check into CVS
13. Pass to group for evaluation
14. Update files and check into CVS
	N/A
	
	
	

	10
	Process: Check out rules file
	Update CVS in HEAD at Root/OSS/SISA/doc/netcool/design/Existing-to-NcKL-Rules-Files-OID.xls.
	N/A
	
	
	

	
	Process MIB check in
	Check in any MIBS used to generate files into Root/OSS/SISA/Doc/Netcool/mibs
	N/A
	
	
	

	12
	Process: Syntax Check
	cd $NC_RULES_HOME
./_test_mttrapd.sh | grep Warning
	N/A
	
	
	

	13
	Process: HUP Probe
	cd $NC_RULES_HOME
./_hup_mttrapd.sh
sudo ./_hup_syslog.sh
	N/A
	
	
	

	14
	Process: Enterprise OID Overlap Detection
	To get a list of File:Enterprise IDs sorted by Enterprise IDs:
 grep -E "^case " *.rules | cut -d : -f 1,2 | sort -t : -k 2 | sed -e 's:case "::g'
Detect overlaps …
 grep -E "^case " *.rules | cut -d : -f 2 | uniq -c | sort -nr | grep -E -v "1 case \""
Currently there appears to be 2 among the NCKL files:
 2 case ".1.3.6.1.4.1.207"
 2 case ".1.3.6.1.4.1.2011.2.17"
To get nits on the overlap in this case:
 grep -E "^case " *.rules | cut -d : -f 1,2 | sort -t : -k 2 | grep ".1.3.6.1.4.1.207\""
results:
 alliedtelesyn-ATMCCommon-MIB--AtiL2-MIB.include.snmptrap.rules:case ".1.3.6.1.4.1.207"
 alliedtelesyn-ATSWTCH2-MIB.include.snmptrap.rules:case ".1.3.6.1.4.1.207"
 grep -E "^case " *.rules | cut -d : -f 1,2 | sort -t : -k 2 | grep ".1.3.6.1.4.1.2011.2.17\""
results:
 huawei-HUAWEI-NE80-DEVICE-MIB--HUAWEI-NE80-ETHERNET-MIB.include.snmptrap.rules:case ".1.3.6.1.4.1.2011.2.17"
 huawei-HUAWEI-NE80-POS-MIB.include.snmptrap.rules:case ".1.3.6.1.4.1.2011.2.17"
	N/A
	
	
	

Table 8:Legacy to NcKL Conversion Rules - continued.
	#
	Name
	Description
	Area
	Src
	Do
	Validation Program

	15
	$SEV_KEY
	Use if $EventId doesn't work. Use form: $SEV_KEY = $OS_EventId + “_<blah>”:
	Local
	Add
	Maybe Add
	

	16
	# Id
	Needs to be at the top of each file
	Top
	Add
	Add
	NCKLFinalClean.pl

	17
	#
	Remove all header comments (except # Id
	Top
	Legacy
	Remove
	NCKLFinalClean.pl

	18
	#TODO: <instruction
	Use to point out future work
	ALL
	Add
	Add
	

	19
	$DEFAULT_ExpireTime
	Remove from individual cases (if possible.)
	Local
	NCKL
	Remove
	NCKLAutoConverter.pl

	20
	$DEFAULT_Severity
	Remove from individual cases (if possible.)
	Local
	NCKL
	Remove
	NCKLAutoConverter.pl

	21
	$DEFAULT_Type
	Remove from individual cases (if possible.)
	Local
	NCKL
	Remove
	NCKLAutoConverter.pl

	22
	$DEFAULT_ExpireTime
	Add to top. Use individually if both $EventId and $SEV_KEY wont work
	Top
	Add
	Move
	NCKLAutoConverter.pl

	23
	$DEFAULT_Severity
	Add to top. Use individually if both $EventId and $SEV_KEY wont work
	Top
	Add
	Move
	NCKLAutoConverter.pl

	24
	$DEFAULT_Type
	Add to top. Use individually if both $EventId and $SEV_KEY wont work
	Top
	Add
	Move
	NCKLAutoConverter.pl

	25
	$OPTION_TypeFieldUsage
	Remove references (to = 3.6)
	ALL
	Legacy
	Remove
	NCKLFinalClean.pl

	26
	@Identifier
	Ignore if : "@Identifier = @Node + " " + @AlertKey + " " + @AlertGroup + " " + @Type + " " + @Agent + " " + @Manager + " " + $specific-trap"
	Local
	NCKL
	Remove
	NCKLAutoConverter.pl

	27
	@Identifier
	Assign to $OS_Identifier. For example, default section usually: $OS_Identifier=@Node+" "+@Agent+" "+@Manager+" "+$enterprise+" "+$generic-trap+" "+$specific-trap
	Local
	Legacy
	Keep
	NCKLAutoConverter.pl

	28
	@Agent
	@Agent uses NCKL consistently up in main case
	Top
	NCKL
	Move
	NCKLAutoConverter.pl

	29
	@AlertGroup
	Generic clear / NCKL standards
	Local
	NCKL
	Keep
	NCKLAutoConverter.pl

	30
	@AlertKey
	Keep legacy field. If the legacy AlertKey will not work for generic clear (i.e. the up/down events will have different values) then go ahead and fix it? (if it can be fixed easily, otherwise add a TODO).
	Local
	Legacy
	Keep
	NCKLAutoConverter.pl

	31
	@EventId
	Assign to @ASPEventid IF NOT "Unknown"
	Local
	Legacy
	Keep
	NCKLAutoConverter.pl

	32
	@EventId
	Assign to $OS_EventId instead. Used to look up Sev, Type, and Expire time. If not avail, use $SEV_KEY. If that not avail use $DEFAULT_TYPE, etc.
	Local
	NCKL
	Keep
	NCKLAutoConverter.pl

Table 9:Legacy to NcKL Conversion Rules - continued.
	#
	Name
	Description
	Area
	Src
	Do
	Validation

	33
	@Class
	Add new class to netcool/omnibus/etc/class-conversion.sql. Example:
 insert into alerts.conversions values ('Class9310','Class',9310,'Lucent Access Concentrator'); go
 insert into alerts.objclass values (9310,'Lucent Access Concentrator','Default.xpm',''); go.

Use Admin tool to visually check class.
	Top
	Add
	Add
	

	34
	@Customer
	Assign to $OS_Customer instead
	Local
	Legacy
	Keep
	NCKLAutoConverter.pl

	35
	@Vendor
	Keep legacy field
	ALL
	Legacy
	Keep
	NCKLAutoConverter.pl

	36
	@NodeAlias
	Reassign both @NodeAlias and $OS_LocalNodeAlias (i.e. Nagios, URLPoller, SvvsAgent)
	ALL
	Legacy
	Add
	

	37
	@Severity
	@Type along with @Severity and @ExpireTime should move to a seperate .sev. file.
1 Info events should still have Type = 13 and Severity 2
2 Problem events have Type = 1 and Severity = 2-5 (Take from Legacy)
2 Resolution events are Type = 2 and Severity = 1 (NCKL Generic clear)
3 Unknown events have Type = 0 and Severity = 1
	Local
	Legacy
	Move
	NCKLAutoConverter.pl

	38
	@Summary
	Default to original on Summary. Do not use $Summary. Use @Summary instead.
	Local
	Legacy
	Keep
	NCKLAutoConverter.pl

	39
	@Type
	@Type along with @Severity and @ExpireTime should move to a seperate .sev. file.
1 Info events should still have Type = 13 and Severity 2
2 Problem events have Type = 1 and Severity = 2-5 (Take from Legacy)
2 Resolution events are Type = 2 and Severity = 1 (NCKL Generic clear)
3 Unknown events have Type = 0 and Severity = 1
	Local
	Legacy
	Move
	NCKLAutoConverter.pl

	40
	log()
	Include log statements indicate entry and exit from the files. Includes rules, adv rules, user rules.
	Top Bottom
	NCKL
	Add
	NCKLFinalClean.pl

	41
	tabs => spaces
	Use 4 spaces instead of tabs EXCEPT in lookup files that require tabs for delimiters
	ALL
	ALL
	Replace
	NCKLFinalClean.pl

	42
	$a = <EXPR>
	Normalize assignments to use single spaces around '='
	ALL
	ALL
	Fix
	NCKLFinalClean.pl

	43
	Truncate ^M
	Remove ^M characters that m2r uses at the end of lines
	ALL
	ALL
	Remove
	

	44
	Discard
	@LogicState = "discard"
	Local
	Legacy
	Keep
	

	45
	Details
	Keep.
	Local
	Legacy
	Keep
	

	46
	File Contents
	For each rules file contains 1 and only 1 enterprise OID.
	ALL
	ALL
	Fix
	

Table 10:Legacy to NcKL Conversion Rules - continued.
Automating Aspects of Mttrapd NcKL Conversion

In some cases additional programs can be developed to automate correction of chronic issues identified through the tabular view. For example, the following PERL parses through a legacy rules file and pulls out the EventID, Type and Severity to generate the standard NcKL severity table. This can be compared against the NcKL version to see missed cases in either the legacy or NcKL versions as well as identify discrepancies between the two.

CREATE *SEV* FILE ENTRIES

while ($line=<STDIN>) {

 chomp($line);

 if ($line =~ /\s+\@EventId = "(.*)"/) {

 $newEid=$1;

 print "$Eid
$Typ
$Sev
0\n";

 $Eid=$newEid; $Typ=0; $Sev=0;

 } elsif ($line =~ /\s+\@Type = (.*)/) {

 $Typ=$1;

 } elsif ($line =~ /\s+\@Severity = ['](.*)[']/) {

 $Sev=$1;

 }

}

Other programs can be more elaborate and provide cosmetic as well as functional corrections.

#!/usr/bin/perl

##

01/11/2009 Daniel L. Needles Version 1.0

PROGRAM: NcKLFinalClean.pl

USAGE: NcKLFinalClean.pl [FullPath/]<MIB>.include.snmptrap.rules

DESCRIPTION: Scrubs final version for common errors

##

use strict;

GLOBAL ASSIGNS

#my $NEWCVS='\eclipseWorkspace\netcool\rules\include-snmptrap';

#my $OLDCVS='\eclipseWorkspace\netcool\omnibus\probes\linux2x86';

my $FILENM='';

my $lines;

my $oid;

if ($#ARGV != 0) {

 print <<USAGE;

Usage: NcKLFinalClean.pl [<FullPath>|<file>]

Where:

 <File> = Check file in current directory

USAGE

 exit;

} else {

 $FILENM=$ARGV[0];

}

chomp($FILENM);

my $FILEROOT='';

if (!($FILENM =~ /(.*)\.include\.snmptrap\.rules$/)) {

 print "E: File must be <MIB>.include.snmptrap.rules\n";

 print " Got: '$FILENM'\n";

 exit;

} else {

 $FILEROOT =$1;

}

my $default = "

 default:

 \$OS_EventId = \"Unknown\"

 \@Summary = \"Unknown Specific Trap Number (\" + \$specific-trap + \") Received for Enterprise \" + \$enterprise

 \@Severity = 1

 \$OS_Identifier = \@Node + \" \" + \@Agent + \" \" + \@Manager + \" \" + \$enterprise + \" \" + \$generic-trap + \" \" + \$specific-trap

 details(\$*)

 }

";

my $rulesend = "

 ##########

 # Handle Severity via Lookup.

 ##########

 if(exists(\$SEV_KEY)){

 [\$OS_Severity,\$OS_Type,\$OS_ExpireTime] = lookup(\$SEV_KEY, $FILEROOT_sev)

 } else {

 [\$OS_Severity,\$OS_Type,\$OS_ExpireTime] = lookup(\$OS_EventId, $FILEROOT_sev)

 }

 include \"\$NC_RULES_HOME/include-common/AssignSev.include.common.rules\"

 ##########

 # End of Severity via Lookup.

 ##########

 ##########

 # Enter \"Advanced\" and \"User\" includes.

 ##########

 #include \"\$NC_RULES_HOME/include-snmptrap/$FILEROOT.adv.include.snmptrap.rules\"

 #include \"\$NC_RULES_HOME/include-snmptrap/$FILEROOT.user.include.snmptrap.rules\"

 ##########

 # End of \"Advanced\" and \"User\" includes.

 ##########

 log(DEBUG, \"<<<<< Leaving... $FILEROOT.include.snmptrap.rules >>>>>\")

";

print "GETTING: $FILENM\n";

LOAD NcKLSTD

open FILE, "<$FILENM";

$lines = do { local $/; <FILE> };

$lines =~ s/\r//g; # DOS2UNIX

CLEANING

$lines=~ s/^(\n|#.*?\n)+//s; ## REMOVE LEADING COMMENTS

$lines="# \$Id\$\n" . $lines; ## ADD VERSION CONTROL TO FRONT

if ($lines=~ m/^(.*)##########\n\s*# Handle Severity via Lookup./s) {

 my $main=$1;

 if ($main=~ m/^(.*)default:/s) {

 $lines=$1 . $default . $rulesend;

 } else {

 print "W: Could not detect: 'default:'\n";

 $lines=$main . $rulesend;

 }

} else {

 print "W: Could not detect: '# Handle Severity via Lookup.'\n";

 print "$lines\n";

 exit;

}

$lines=~ s/log\s*\(.*Entering.*\n//g;

if ($lines=~ m/^(.*?\ncase\s*\")\s*(\.[\d\.]+)\s*(\".*?\n)(.*)/s) {

 my $log=" log(DEBUG, \"<<<< Entering... $FILEROOT\.include\.snmptrap\.rules \[$2\]\[Generic \" + \$generic-trap + \"\]\[Specific \" + \$specific\-trap + \"\] >>>>\")\n";

 $lines=$1 . $2 . $3 . $log . "\n" . $4;

 $oid=$2;

} else {

 print "E: Could not detect: leading enterprise case stmt\n";

 exit;

}

my $tabcnt=$lines=~ s/\t/ /gms; ## REPLACE TABS WITH 4 SPACES

my $eqlcnt=$lines=~ s/\s*=\s*/ = /gms; ## NORMALIZE EQUALS

my $IP2=$lines=~ s/^\s*\@IP2 = .*?\n//gms; ## REMOVE IP2 ASSIGNMENTS

my $OTFU=$lines=~ s/^\s*\$OPTION_TypeFieldUsage = .*?\n//gms; ## REMOVE

$lines =~ s:\$OMNIHOME\/probes\/linux2x86:\$NC_RULES_HOME:g; # Directory fix

my $tmp="$FILENM" . ".new";

open(NEW,">$tmp");

print NEW "$lines";

close(NEW);

print "GETTING: $FILEROOT.sev.snmptrap.lookup\n";

open FILE, "<$FILEROOT.sev.snmptrap.lookup";

$lines = do { local $/; <FILE> };

$lines =~ s/\r//g; # DOS2UNIX

CLEANING

$lines=~ s/^(\n|#.*?\n)+//s; ## REMOVE LEADING COMMENTS

$lines="# \$Id\$\n" . $lines; ## ADD VERSION CONTROL TO FRONT

$lines=~ s/\t(\d+)\t2\t/\t1\t2\t/g; ## RESOLUTION ALWAYS SEV 1

$lines=~ s/\t(\d+)\t13\t/\t2\t13\t/g;

my $tmp="$FILEROOT.sev.snmptrap.lookup.new";

open(NEW,">$tmp");

print NEW "$lines";

close(NEW);

print "GETTING: $FILEROOT.adv.include.snmptrap.rules\n";

open FILE, "<$FILEROOT.adv.include.snmptrap.rules";

$lines = do { local $/; <FILE> };

$lines =~ s/\r//g; # DOS2UNIX

CLEANING

$lines=~ s/^(\n|#.*?\n)+//s; ## REMOVE LEADING COMMENTS

if ($lines=~ m/^(.*)log\(.*?<<<<< Leaving/s) {

 $rulesend="log(DEBUG, \"<<<<< Leaving... $FILEROOT.adv.include.snmptrap.rules >>>>>\")";

 $lines=$1 . $rulesend;

} else {

 print "E: Could not detect: leaving log statement.\n";

 exit;

}

$lines=~ s/log\s*\(.*Entering.*\n//g;

my $log="log(DEBUG, \"<<<< Entering... $FILEROOT\.adv\.include\.snmptrap\.rules \[$oid\]\[Generic \" + \$generic-trap + \"\]\[Specific \" + \$specific\-trap + \"\] >>>>\")\n";

$lines="# \$Id\$\n" . $log . $lines; ## ADD VERSION CONTROL TO FRONT

my $tabcnt=$lines=~ s/\t/ /gms; ## REPLACE TABS WITH 2 SPACES

my $eqlcnt=$lines=~ s/\s*=\s*/ = /gms; ## NORMALIZE EQUALS

my $tmp="$FILEROOT.adv.include.snmptrap.rules.new";

open(NEW,">$tmp");

print NEW "$lines";

close(NEW)
Automating Mttrapd NcKL Conversion

The tabular view of the data provided a unique perspective of the data. Further, by using the techniques discussed later many difficult-to-see errors can be programmatically discovered by using the table and equation equivalent of the rules files.
For example, the equation can be analyzed to see how many times each field of the alerts.status table is assigned for each path. If a field is not assigned or assigned more than once for any given path, that indicates an error. The following program assumes the table is converted to a hash of columns. Each column points to an array representing the rows in the table and the values assigned at each row. The program also assumes the equation is represented as a postfix stack.

my @stack;

for (my $i=0; $i<=$#postfix; $i++) {

 my $op=$postfix[$i];

 if($op eq 'x') {

 push @stack, pop(@stack) * pop(@stack);

 } elsif($op eq '+') {

 push @stack, pop(@stack) + pop(@stack);

 } elsif($op =~ m/^\d+$/) {

 push(@stack,1);

 }

}

my $totalpaths=$stack[0];

CALCULATE POSSIBLE PATH DISTRIBUTION

print "FIELD,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,Sum,Total,FIELD,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\n";

foreach my $item (sort keys %data) {

 my @stack; ## REFRESH STACK FOR EACH FIELD

 for (my $i=0; $i<=$#postfix; $i++) {

 my $op=$postfix[$i];

 ## MULTIPLY TOGETHER DISTRIBUTIONS

 if($op eq 'x') {

 my $b=pop(@stack); my $a=pop(@stack); ## GRAB LAST TWO VALUES

 my @b=split /;/,$b; my @a=split /;/,$a; ## ARRAY OF ELEMENTS

 my @c; ## BUILD NEW ARRAY

 for (my $k=0; $k<=$#a; $k++) {

 for (my $j=0; $j<=$#b; $j++) {

 my ($aa,$ab)=split /,/,$a[$k]; #FIELD ASSIGNMENT COUNT, Path Count

 my ($ba,$bb)=split /,/,$b[$j]; #FIELD ASSIGNMENT COUNT, Path Count

 $c[$aa+$ba]+=$ab*$bb;

 }

 }

 ## BUILD THE NEW POPULATION FROM C INDEXED BY FIELD ASSIGNMENT COUNTS.

 my $newelem;

 for (my $j=0; $j<=$#c; $j++) {

 if ($c[$j]) {

 $newelem.="$j,$c[$j];";

 }

 }

 ## PUSH THE POPULATION, REPLACING TOP TWO STACK ELEMENTS WITH NEW ELEMENT

 push(@stack,$newelem);

 ## ADD TOGETHER DISTRIBUTIONS REPLACING WITH NEW DISTRIBUTION

 } elsif($op eq '+') {

 my @c; ## BUILD NEW ARRAY

 ## DEDUPLICATE TOP TWO STACK ELEMENTS INTO C INDEXED BY FIELDASSIGNMENTCNT

 for (my $j=0; $j<=1; $j++) {

 my $a=pop(@stack); ## GRAB STACK ELEMENT

 my @a=split /;/,$a; ## BREAK INTO DISTRIBUTION

 for (my $k=0; $k<=$#a; $k++) {

 my ($aa,$ab)=split /,/,$a[$k]; #FieldAssigned?, Path Count

 $c[$aa]+=$ab; ## DEDUPLICATE DISTRIBUTION

 }

 }

 ## BUILD THE NEW POPULATION FROM C INDEXED BY FIELD ASSIGNMENT COUNTS.

 my $newelem;

 for (my $j=0; $j<=$#c; $j++) {

 if ($c[$j]) { ## SKIP OVER FIELD ASSIGNMENT COUNTS VALUES WITH NO PATHS

 $newelem.="$j,$c[$j];";

 }

 }

 ## PUSH THE POPULATION, REPLACING TOP TWO STACK ELEMENTS WITH NEW ELEMENT

 push(@stack,$newelem);

 ## ENCOUNTERED A FX STATEMENT RATHER THAN AN ADDITION OR MULTIPLY.

 ## SO PUSH INITIAL ELEMENT ON STACK

 } elsif($op =~ m/^(\d+)$/) {

 my $present = ($data{$item}[$1] ne '' || $data{$item}[$1]=~/\d+/)?1:0;

 push(@stack,"$present,1;"); ## FIELDASSIGNMENTCNT, PATHCOUNT

 } else {

 print "$op AREADY DONE.\n";

 }

 }

 ## DONE SO DUMP STACK FOR FIELD

 for (my $j=$#stack; $j>=0; $j--) {

 my @c = split /;/,$stack[$j];

 my @d;

 my $runtotal=0;

 for (my $k=0; $k<=$#c; $k++) {

 my ($aa,$ab)=split /,/,$c[$k]; #FieldAssigned?, Path Count

 $d[$aa]=$ab;

 $runtotal+=$ab;

 }

 print "$item";

 for (my $k=0; $k<=15; $k++) {

 my $val=($d[$k])?$d[$k]:0;

 print ",$val";

 }

 print ",$runtotal,$totalpaths,$item";

 for (my $k=0; $k<=15; $k++) {

 my $val2=int((10000*($d[$k]/$totalpaths))+.5)/100;

 my $val=($d[$k])?($val2==0)?1:$val2:0;

 print ",$val";

 }

 print "\n";

 }

}

In the case of the fortune 500 company many glaring errors became apparent. The rows represent the fields while the columns represent the number of reassignments for the field. Except in rare cases all the field assignments should appear under the colum with 0 or 1 assignment. This is not the case in this case study
	FIELD
	0
	1
	2
	3
	4
	5
	6
	Total

	@Agent
	0
	1.06E+61
	3.72E+66
	5.97E+72
	3.86E+52
	2.03E+51
	6.76E+50
	5.97E+72

	@AlertGroup
	1.43E+63
	3.72E+66
	5.57E+61
	5.10E+72
	8.76E+71
	0
	0
	5.97E+72

	@AlertKey
	1.42E+63
	1.49E+65
	5.97E+72
	1.74E+66
	0
	0
	0
	5.97E+72

	@CMDBIdentifier
	4.63E+28
	2.99E+72
	2.99E+72
	1.60E+66
	0
	0
	0
	5.97E+72

	@CMDBName
	4.63E+28
	2.99E+72
	2.99E+72
	1.60E+66
	0
	0
	0
	5.97E+72

	@CauseType
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Class
	9.26E+28
	4.24E+52
	5.97E+72
	3.85E+63
	0
	0
	0
	5.97E+72

	@CorrScore
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Customer
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Vendor
	1.99E+72
	3.98E+72
	2.48E+66
	0
	0
	0
	0
	5.97E+72

	@Display
	2.99E+72
	2.99E+72
	0
	0
	0
	0
	0
	5.97E+72

	@EventId
	0
	5.97E+72
	5.37E+56
	0
	0
	0
	0
	5.97E+72

	@ExpireTime
	0
	4.48E+72
	1.49E+72
	0
	0
	0
	0
	5.97E+72

	@GroupCustomer
	1.17E+25
	5.48E+67
	3.19E+70
	3.37E+71
	1.26E+72
	2.04E+72
	1.61E+72
	5.97E+72

	@GroupDeviceType
	1.17E+25
	2.74E+67
	8.06E+69
	9.77E+70
	4.95E+71
	1.33E+72
	1.98E+72
	5.97E+72

	@GroupRegion
	1.74E+28
	1.12E+72
	2.99E+72
	1.87E+72
	9.98E+65
	1.99E+59
	0
	5.97E+72

	@GroupSLAGroup
	1.17E+25
	5.71E+66
	3.87E+68
	5.46E+69
	3.77E+70
	1.58E+71
	4.45E+71
	5.97E+72

	@GroupService
	1.17E+25
	1.83E+67
	3.62E+69
	4.47E+70
	2.42E+71
	7.38E+71
	1.38E+72
	5.97E+72

	@GroupServiceLevel
	1.17E+25
	2.74E+67
	8.04E+69
	8.18E+70
	3.66E+71
	9.36E+71
	1.50E+72
	5.97E+72

	@Identifier
	1.99E+72
	3.98E+72
	8.98E+61
	4.24E+52
	0
	0
	0
	5.97E+72

	@LocalNodeAlias
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@LocalObjRelate
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@LocalPriObj
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@LocalRootObj
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@LocalSecObj
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Manager
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@NmosCauseType
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@NmosObjInst
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@NmosSerial
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Node
	0
	5.97E+72
	3.18E+66
	0
	0
	0
	0
	5.97E+72

	@NodeAlias
	9.26E+28
	0
	5.97E+72
	3.19E+66
	5.00E+55
	0
	0
	5.97E+72

	@NodeAlias_LogicState
	4.98E+72
	9.95E+71
	0
	0
	0
	0
	0
	5.97E+72

	@OID
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@ObjectId
	5.97E+72
	2.23E+65
	3.47E+66
	0
	0
	0
	0
	5.97E+72

	@ObjectInstance
	5.97E+72
	1.85E+66
	1.06E+66
	0
	0
	0
	0
	5.97E+72

Table 11: Field Assignment Counts By Path (literal)

	FIELD
	0
	1
	2
	3
	4
	5
	6
	Total

	@ObjectValue
	4.26E+72
	1.71E+72
	1.06E+66
	0
	0
	0
	0
	5.97E+72

	@PhysicalCard
	0
	2.99E+72
	2.99E+72
	0
	0
	0
	0
	5.97E+72

	@PhysicalPort
	0
	2.99E+72
	2.99E+72
	7.94E+57
	0
	0
	0
	5.97E+72

	@PhysicalSiteId
	9.26E+28
	5.97E+72
	3.19E+66
	0
	0
	0
	0
	5.97E+72

	@PhysicalSlot
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@ProbeServer
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@ProcessReq
	0
	8.53E+71
	3.41E+72
	1.71E+72
	0
	0
	0
	5.97E+72

	@RemoteNodeAlias
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@RemoteObjRelate
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@RemotePriObj
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@RemoteRootObj
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@RemoteSecObj
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Service
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Severity
	2.99E+71
	3.20E+72
	2.15E+72
	3.14E+71
	0
	0
	0
	5.97E+72

	@SiteId
	6.18E+28
	3.98E+72
	1.99E+72
	1.06E+66
	2.04E+61
	9.08E+60
	0
	5.97E+72

	@Summary
	6.10E+60
	1.40E+72
	2.88E+72
	1.58E+72
	1.03E+71
	7.96E+69
	6.62E+62
	5.97E+72

	@SuppressEscl
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@TaskList
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@TrapAgentIp
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@TrapGeneric
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@TrapSourceIp
	9.26E+28
	5.97E+72
	3.18E+66
	0
	0
	0
	0
	5.97E+72

	@TrapSpecific
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@TrapUpTime
	9.26E+28
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@Type
	2.24E+71
	2.48E+72
	2.42E+72
	7.74E+71
	7.84E+70
	0
	0
	5.97E+72

	@URL
	5.97E+72
	6.22E+57
	0
	0
	0
	0
	0
	5.97E+72

	@VarBinds
	2.24E+70
	5.95E+72
	0
	0
	0
	0
	0
	5.97E+72

	@X733CorrNotif
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@X733EventType
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@X733ProbableCause
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

	@X733SpecificProb
	0
	5.97E+72
	0
	0
	0
	0
	0
	5.97E+72

Table 12: Field Assignment Counts By Path (literal) - continued.

Looking at the path counts can be daunting. By converting these to percentages, the break down of how many paths are assigned or over assigned becomes clearer.

	FIELD
	0
	1
	2
	3
	4
	5
	6
	7

	@Agent
	0
	1
	1
	100
	1
	1
	1
	0

	@AlertGroup
	1
	1
	1
	85.33
	14.67
	0
	0
	0

	@AlertKey
	1
	1
	100
	1
	0
	0
	0
	0

	@CMDBIdentifier
	1
	50
	50
	1
	0
	0
	0
	0

	@CMDBName
	1
	50
	50
	1
	0
	0
	0
	0

	@CauseType
	0
	100
	0
	0
	0
	0
	0
	0

	@Class
	1
	1
	100
	1
	0
	0
	0
	0

	@CorrScore
	0
	100
	0
	0
	0
	0
	0
	0

	@Customer
	0
	100
	0
	0
	0
	0
	0
	0

	@Vendor
	33.33
	66.67
	1
	0
	0
	0
	0
	0

Table 13: Field Assignment Counts By Path (percentage).

	FIELD
	0
	1
	2
	3
	4
	5
	6
	7

	@Display
	50
	50
	0
	0
	0
	0
	0
	0

	@EventId
	0
	100
	1
	0
	0
	0
	0
	0

	@ExpireTime
	0
	75
	25
	0
	0
	0
	0
	0

	@GroupCustomer
	1
	1
	0.53
	5.65
	21.13
	34.2
	26.89
	10.14

	@GroupDeviceType
	1
	1
	0.14
	1.64
	8.29
	22.23
	33.16
	26.09

	@GroupRegion
	1
	18.75
	50
	31.25
	1
	1
	0
	0

	@GroupSLAGroup
	1
	1
	0.01
	0.09
	0.63
	2.65
	7.45
	14.8

	@GroupService
	1
	1
	0.06
	0.75
	4.06
	12.37
	23.17
	27.42

	@GroupServiceLevel
	1
	1
	0.13
	1.37
	6.13
	15.68
	25.19
	26.2

	@Identifier
	33.33
	66.67
	1
	1
	0
	0
	0
	0

	@LocalNodeAlias
	0
	100
	0
	0
	0
	0
	0
	0

	@LocalObjRelate
	0
	100
	0
	0
	0
	0
	0
	0

	@LocalPriObj
	0
	100
	0
	0
	0
	0
	0
	0

	@LocalRootObj
	0
	100
	0
	0
	0
	0
	0
	0

	@LocalSecObj
	0
	100
	0
	0
	0
	0
	0
	0

	@Manager
	1
	100
	0
	0
	0
	0
	0
	0

	@NmosCauseType
	0
	100
	0
	0
	0
	0
	0
	0

	@NmosObjInst
	0
	100
	0
	0
	0
	0
	0
	0

	@NmosSerial
	0
	100
	0
	0
	0
	0
	0
	0

	@Node
	0
	100
	1
	0
	0
	0
	0
	0

	@NodeAlias
	1
	0
	100
	1
	1
	0
	0
	0

	@NodeAlias_LogicState
	83.33
	16.67
	0
	0
	0
	0
	0
	0

	@OID
	1
	100
	0
	0
	0
	0
	0
	0

	@ObjectId
	100
	1
	1
	0
	0
	0
	0
	0

	@ObjectInstance
	100
	1
	1
	0
	0
	0
	0
	0

	@ObjectValue
	71.43
	28.57
	1
	0
	0
	0
	0
	0

	@PhysicalCard
	0
	50
	50
	0
	0
	0
	0
	0

	@PhysicalPort
	0
	50
	50
	1
	0
	0
	0
	0

	@PhysicalSiteId
	1
	100
	1
	0
	0
	0
	0
	0

	@PhysicalSlot
	0
	100
	0
	0
	0
	0
	0
	0

	@ProbeServer
	1
	100
	0
	0
	0
	0
	0
	0

	@ProcessReq
	0
	14.29
	57.14
	28.57
	0
	0
	0
	0

	@RemoteNodeAlias
	0
	100
	0
	0
	0
	0
	0
	0

	@RemoteObjRelate
	0
	100
	0
	0
	0
	0
	0
	0

	@RemotePriObj
	0
	100
	0
	0
	0
	0
	0
	0

	@RemoteRootObj
	0
	100
	0
	0
	0
	0
	0
	0

	@RemoteSecObj
	0
	100
	0
	0
	0
	0
	0
	0

	@Service
	0
	100
	0
	0
	0
	0
	0
	0

	@Severity
	5.01
	53.66
	36.08
	5.25
	0
	0
	0
	0

	@SiteId
	1
	66.67
	33.33
	1
	1
	1
	0
	0

	@Summary
	1
	23.4
	48.27
	26.47
	1.73
	0.13
	1
	1

	@SuppressEscl
	0
	100
	0
	0
	0
	0
	0
	0

	@TaskList
	0
	100
	0
	0
	0
	0
	0
	0

	@TrapAgentIp
	1
	100
	0
	0
	0
	0
	0
	0

	@TrapGeneric
	1
	100
	0
	0
	0
	0
	0
	0

	@TrapSourceIp
	1
	100
	1
	0
	0
	0
	0
	0

Table 14: Field Assignment Counts By Path (percentage) - continued.

	FIELD
	0
	1
	2
	3
	4
	5
	6
	7

	@TrapSpecific
	1
	100
	0
	0
	0
	0
	0
	0

	@TrapUpTime
	1
	100
	0
	0
	0
	0
	0
	0

	@Type
	3.76
	41.49
	40.47
	12.96
	1.31
	0
	0
	0

	@URL
	100
	1
	0
	0
	0
	0
	0
	0

	@VarBinds
	0.37
	99.63
	0
	0
	0
	0
	0
	0

	@X733CorrNotif
	0
	100
	0
	0
	0
	0
	0
	0

	@X733EventType
	0
	100
	0
	0
	0
	0
	0
	0

	@X733ProbableCause
	0
	100
	0
	0
	0
	0
	0
	0

	@X733SpecificProb
	0
	100
	0
	0
	0
	0
	0
	0

Table 15: Field Assignment Counts By Path (percentage) - continued.

From the results of the program specific fields could be targeted and analyzed in regard to under or over assigning of the field. Using the table made it easier to identify the areas of code that caused the issues. Once the clean up was complete the next stage of the NcKL conversion could begin

Trimming NcKL Rules Based on Usage

Introduction

One of the final steps to a conversion to the NcKL standard is to remove any include files for vendors not in the network based on extended historical data. This can be accomplished in three steps:

1. Gather Historical Data

2. Gather Rules File Data

3. Correlate the Two Datasets

Gather Historical Data

The first step is to pull unique events (identified by enterprise ID in this case) and the number of occurrences from the historical database. This can be done through a simple SQL query. Some of the data that should be collected include:

· Enterprise ID

· Oldest Hit

· Newest Hit
· Hit Count

· Agent Field

By using the group by expression against the enterprise ID, the oldest, newest, and total count can give context to the data. Also grabbing the Agent and other fields can help determine that the enterprise ID wasn't found among the rules files.

Gather Rules file Data

The next step is to gather information about the rules files. This can be complicated if the rules files have evolved heavily over the period being examined. The simplest way to gather this information is to run a program against a repository of the rules files. The following is a simple example of a working program which generates a list of OID that were found in the historical database.

#!/usr/bin/perl

###

PROGRAM: EIDAudit.pl 03-06-2009 Ver 1.0

PURPOSE: Compares history "hits" against OIDs.

NOTE: It does not list EIDs with no hits

only EIDs with hits or missing EIDs.

###

#grep " Agent =" snmptrap.rules | grep -E -v #

my @oids=`cat oidList.txt`; ## GRAB OID LIST
for ($i=0; $i<=$#oids; $i++) {

 $oids[$i]=~s/\r//g;

 chomp $oids[$i];

 my ($oid,$rest)=split /\t/,$oids[$i],2;

 $x='grep -E "^case.*' . $oid . '\"" *.rules';

 @x=`$x`;

 if ($#x > -1) {

 foreach $item (@x) {

 $item=~ s/:/\t/g;

 $item=~ s/\r//g;

 chomp($item);

 print "$i\t$oid\t$item\t$rest\n";

 }

 } else {

 $x='grep -E "^case.*' . $oid . '" *.rules';

 @x=`$x`;

 if ($#x > -1) {

 foreach $item (@x) {

 $item=~ s/:/\t/g;

 $item=~ s/\r//g;

 chomp($item);

 print "$i\t$oid\t$item\t$rest\n";

 }

 } else {

 $x='grep -E -l "' . $oid . '" *.rules';

 @x=`$x`;

 if ($#x > -1) {

 foreach $item (@x) {

 $item=~ s/:/\t/g;

 $item=~ s/\r//g;

 chomp($item);

 print "$i\t$oid\t$item\t$rest\n";

 }

 } else {

 print "$i\t$oid\t\t\t\t$rest\n";

 }

 }

 }

}
Several bits of data should be gleaned from the rules files. This can be collected relatively easily by performing greps against the rules files.

grep " Agent =" snmptrap.rules | egrep -v # > x

find . -name "*.rules" | xargs egrep "case| Agent =" | egrep -v "^#" >> x
Or with a bit more difficulty only the rules files referenced by the primary snmptrap.rules file and subsequent includes can be queried. (This is left as an exercise.) Once collected the results can be parsed into meaningful data:

· Enterprise ID

· File Match
· Case Stmt
· Comments
Correlate the Two Datasets

[image: image7.emf]Rules Files - Files Count

Before2009

13%

No Traffic

78%

Dup Hits

0%

Good

3%

Unknown

0% Missed

5%

Misconfigured

1%

Once all the data is gathered, the rules files can be correlated against the actual historical occurrences. From this the data can be "typed":

· Misconfigured

· Missed

· Dup Hits

· Unknown

· Good

· BeforeCutOffDate

· No Traffic

Both the events and the files can be compared against these types. The results can often be surprising. For example, from one fortune 500 company the following was found:

[image: image8.emf]Rules File - Event Count by Issue

Misconfigured

1%

Before2009

4%

No Traffic

0%

Missed

5%

Dup Hits

0%

Unknown

0%

Good

90%

In this case it was found that 78% of the files could be discarded since no traffic ever came from these type of devices. An additional 13% of the files could be discarded because no traffic was found in the previous year. Further though 5% of the enterprise ID had no associated files, they represented only 5% of the traffic and thus took a lower priority on the project list against other more critical issues.

The result was 90% of the NcKL files could be discarded without impacting the service provided to the customer. This greatly simplified the future maintenance of the rules files.

Future of Event Management

Introduction

The future of event management can be viewed through the lens of the past. This is because the NMS industry is cyclical in nature. New monitoring tools and techniques arise and spawn new companies with new products. These companies are consumed by hardware vendors who view the NMS products as vehicles for selling more hardware, software, and services. However, the hardware vendors’ goal of selling more hardware and software is actually counter to effective monitoring. So, though not consciously, the NMS products degrade as focus and resources steer away from the NMS products and toward the hardware and software that command larger profit margins.

The history of these cycles is written in the product lines of large hardware vendors such as CA, IBM, Cisco, and HP. Captured within these products are the various advancements in NMS that continually get rediscovered, forgotten, and rediscovered again. Thus, captured in these legacy NMS products are the potential enhancements of the future. Some of these enhancements include the following:

· Parallel Processing

· Workflows/Behavior Modeling

· Actionable Oriented Event Management

Parallel Processing

The process of determining the anatomy of the language revealed the rules files are broken up into a collection of Fx statements related together by an equation. Further, if the Fx statement relationships are independent the operations could be interchanged in order. If this is the case nothing would prevent these operations from being performed by separate processes or CPUs. The only relationship that would prevent this is the covariate relationship since this requires a particular order to how the Fx statements are executed. In some cases for very large networks with very large rules files having the ability to split up the processing would speed up the fault management process and enable larger loads of data to be handled.

Workflows/Behavior Modeling

The probe rules are limited from doing truly complex and interactive behavior models by one thing - the limited functions allowed. Currently, the rules files are designed to perform primarily a single function - map incoming events to a single event in the object server. If there was an ability to interact with the end devices, much more complex workflows and behavior models could be automated.

Actionable Oriented Event Management

One of the pitfalls of the flexibility in handling events is a lack of discrimination. This falls under the old adage if everything is important, then nothing is. In particular, as a Netcool deployment evolves usually the majority of events that flood into the event lists have no actionable work tied to them. As a result they clutter the screen and hide real events that need to be addressed. Sometimes the impact is more minor with needless escalations, or Severity inflation. More often it leads to customer not trusting the monitoring tool. Besides periodically checking in with the customer the easiest way for the rules development team to prevent this scenario is to enforce actionable steps must be attached to displayed events. This can be very difficult since often the customer is the one to determine those actions and often development has little leverage over the customer. However, in the right organizational structures and political climates this type of cooperation can be obtained and leads to very stable monitoring solutions.

Gaps in the NcKL Centric Strategy

Introduction

At first glance the need to modify rules files, much less establish best practices, seems unnecessary, if not problematic. After all, even before the IBM purchase, Micromuse began distributing the Netcool Knowledge Library (NcKL.) The goal of NcKL was to centralize all the industrial knowledge into one repository – the NcKL. Additionally the mib2rules script and GAT website provided powerful tools to augment NcKL with unincorporated MIBs by converting the MIBs into the NcKL format. In theory NcKL and associated tools would enable all bug fixes and enhancements to be distributed to all supported customers. Moreover, diverging from this repository would result in not leveraging rules files corrections and enhancements and make it difficult to impossible to revert back to NcKL once a customer diverged from the NcKL standard.

Though promising in theory, the practice of NcKL is very different. NcKL contains many bugs and are written with few consistent standards, none of which are communicated well. Further, NcKL is slow to adopt corrections and enhancements.

The problem is not in the concept of NcKL. A shared, common knowledge repository for all rules files would benefit the entire install base of customers. The issue is a combination of weak language syntax and the strategic motivations behind the creation of NcKL.

In particular, the strategic drivers behind NcKL do not mirror the strategic drivers of NcKL’s customers. The NcKL approach is focused on retaining centralized control within IBM, rather than sharing knowledge. This skewed focus combined with the industry challenges makes a purely NcKL centric strategy for rules files management incomplete. The issues include:

· Closed and Centrally Controlled Source

· Open and Flexible Language Syntax

· Top down Rules Files Language Culture

· “NMS Tool Centric” Verses “Vendor Centric Rule Creation”

· Low Priority of NMS FM Among Vendors

Each of these issues will be discussed and their impact to the NcKL strategy assessed. As a result, it will be shown that a pure NcKL centric strategy to rules files management is incomplete and best practices improve clarity by restricting variances within the rules.

Closed and Centrally Controlled Source

The mission for NcKL is diametrically opposed to the approach taken. NcKL’s mission is to capture and consolidate the industries’ knowledge and lessons learned into the logic of the rules files. However, the approach contains strategic flaws. Specifically, transparency and shared ownership is required to encourage independent consultants and competing companies to volunteer and share their intellectual property (IP.) However, the approach doesn’t incorporate a free, peer reviewed forum where contributors can directly update rules files. Instead, IBM retains full control of NcKL. Information is collected passively through the mib2rules program, website submissions, support calls, and partner channels. The lack of a direct phone number to support illustrates the type of barriers blocking anyone who wishes to contribute to the NcKL mission. Finally, credit is not given to contributions, which fuels open source contribution. The combination of these issues hinders the mission of creating a comprehensive, centralized collection of industrial wisdom within the logic of the rules files.

Open and Flexible Language Syntax

Another issue with NcKL is the nature of the rules files language. The programmatic rules files maximize flexibility in solving issues. The cost of this flexibility is loose standards. Specifically, the syntax allows an infinite number of ways to represent solutions within the rules files. This complexity leads to another cost. Flexibility encourages dependencies between different areas of the rules file while hiding those dependencies. As a result, without warning a change in one area of a rules file can completely subvert the impact of another area. Changes to the rules files for one type of event, often creates unexpected consequences for a host of other events. Since events are often random, these consequences could be hidden indefinitely. This makes maintaining the rules files largely a trial and error process. Worse, the open and flexible rules files language syntax interacts with the closed nature of NcKL in undesirable ways. While the flexible language syntax makes problems hard to identify and correct; the closed nature of NcKL creates an environment of isolation with limited resources and perspective when trying to address these problems. Cross pollination of intellectual property (IP) between companies is a manual process within the walls of IBM.
Top down Rules Files Language Culture

The culture that surrounds a programming language can take one of two general approaches. In the first case, programs can be written with emphasis on the system, standards, and language syntax. Languages such as C and PERL take this approach and as a result development is more expensive and cumbersome to the customer, but the program robustness is better and program’s lifespan is longer. Alternatively, programs can be written with an emphasis on the business problems and the customer interface. Languages such as Java and .NET take this approach and as a result are much cheaper and quicker to build, but the quality and adherence to standards suffer over the long run. Rules files development follows the latter, top down culture. Though rules files do not possess a direct GUI interface, rules files development is a fourth generational language. As such, the focus is to process disparate events into a clear consistent format - a clearly business oriented goal. Combined with the limited resources from central control and the flexibility of the language, language culture creates obscure logic that is difficult to decode and maintain. These issues dismantle IBM’s efforts to provide a bug free, up to date rules files library.
Worse a top down approach has a viral effect which infects the community of rules programmers. In particular, the top down approach breeds a culture of script writers rather than system programmers. The result is less awareness and focus on the rules writing. Clarity and efficiency suffer as the rules' architects lean on the rules flexibility in order to push out more changes quickly. This more tactical approach doesn’t adhere to long term strategic goals or best practices and can lead to a solution that needs to be overhauled. Often the cost barrier to the overhaul leads to solution abandonment.
“NMS Tool Centric” verses “Vendor Centric Rule Creation”

Not all the problems with NcKL are within the control of IBM. An intimate understanding of each and every device, program or monitored element is needed to assign the relative urgency and importance of every event as well as translate the meaning to the end user. In practice this information is not readily available. Despite its size, IBM has limited leverage and cannot force each and every vendor to provide this information. Further IBM is a hardware and software vendor and often competes with many of the products and programs that need to be monitored. As a result even if:

· An open forum was established

· A clear rules format was articulated
· A bottom up culture was adopted

The NcKL approach to rules files management would remain difficult based on limited information access alone.

Low Priority of NMS FM among Vendors

Another NcKL problem outside of IBM’s control is the low priority of NMS FM among vendors. In particular the main goal of vendors is to sell the hardware or software that they are producing. This production also requires focus on sales, marketing, support, and documentation. Though important, NMS FM ranks among the lowest priorities. Often the priority is so low that a vendor’s NMS FM posture is more an afterthought, created after product release and documentation corrections. A quick survey of other legacy NMS FM solutions among the big four: IBM, Cisco, BMC, and HP attest to this fact. The reality is that an effective NMS FM doesn’t sell more hardware. So regardless of intent, a hardware vendor will unconsciously starve its NMS FM solution by focusing on the other aspects of their business. As a result, even with all “controllable factors” managed correctly, a lack of access to vendor information and the low priority of providing this information make a pure NcKL approach to rules files management incomplete.

Conclusion

An NcKL centric strategy does not provide a complete strategy for rules maintenance. There are too many unaddressed issues. Some can be controlled by IBM – but such changes are unlikely. IBM’s current strategic direction with NcKL is driven from its primary revenue streams – as it should be. Hardware and software sales greatly outweigh the profit margins made in service. As a result, the focus is on centralizing control and using service to leverage hardware and software sales. An open NcKL strategy would violate these goals. As a result it is unlikely that IBM will ever fully open NcKL. Further, many of the issues are not within IBM’s control. The effects of these issues can only be mitigated, never solved. As a result, regardless of how IBM evolves its NcKL centric strategy, additional controls on the rules language flexibility are required to improve the rules files’ clarity and efficiency. By applying configuration management practices the useful lifespan of the rules files can be extended.

The Problem: Rules File Language “Function over Fashion” Issue

There are benefits and drawbacks to the rules file approach used by the probes. For the most part the rules files are very flexible and efficient as a passive event processing agent. The probe rules files’ if-then-else based language is flexible enough to map the source information to the consistent data structure of an alert. Further, the language restricts the use of loops, complex calculations, and other functions that would compromise the robustness and efficiency of the event processing.

[image: image9.png]Flexible

Clear Efficient

Figure 5: You are here – Rules File location within the language domain

The probes have two notable limitations: passivity and obfuscation.

The probes are purely passive. That is, the probe rules can only convert the individual alarms into corresponding events by populating the fields for a single row within the alerts.status and alerts.details table along with log file entries. There is no means to intelligently interact with the data directly to create more complex behavior models or work flows. As a result, automating normal NOC business processes cannot be done through the probes alone.

However this lack of flexibility in terms of actions enables the probes to provide very complex and diverse parsing of the data stream. For example a standard NcKL based MTTRAPD deployment will allow over 141,902,464,636,685,000,000,000,000,000 possible parsing paths. (Appendix A through Appendix F present summary data from an NcKL based MTTRAPD implementation in more detail.) Thus, the rules file language, though not flexible in actions, is well adapted functionally to its purpose of efficient and flexible translation of incoming data streams into normalized events.

The second notable limitation of the probes is how they obfuscate. The issue can be summed up in the expression - functional, but not fashionable. In particular, the rules file syntax sacrifices clarity in the following areas:

· Conciseness

· Standardization

· Visualization

· Code’s meaning/purpose

· Audit ability

The programming language syntax and inability to loop contribute to the verbose nature of the rules files. The language’s flexibility leads to multiple ways with wasteful abstractions to accomplish the same conversion. In addition, the programming language syntax and the ability to include multiple files obscure the holistic impact of the rules. At first these fashionable concerns seem trivial until the functional impact is understood. In particular, certain pertinent questions are difficult to answer such as:

· Reactive Troubleshooting

· What part of the rules file set the @Node field for a particular event?

· What area of the rules causes two events to have inconsistent values?

· Which change in the rules garbled the @Summary field for a set of particular events?

· Proactive correctness/standardization

· Are there any sections of the rules file that incorrectly override the @Summary field for an event? (i.e. event enrichment)

· Are any fields never assigned for some paths through the file or assigned more than once?

· Is there a simpler way to represent the same operation within the rules files?

· Do the default @Severity and @Type variables align with the @Severity and @Type values within the severity include files?

· Administration Training on IBM Tivoli Netcool probes

· What is the purpose of a particular section of a rules file?

· Will a particular change and/or simplification break something unexpectedly due to another area of the rules file?

· What areas of the rules file are dependent on other areas?

These difficulties arise from gaps in the language’s “fashion” rather than its function. The beauty and simplicity of a language enables clarity and thus the maintenance for both function and preservation of meaning.

Clarity is even more critical over time. The lack of clarity prevents active configuration management of the rules files. Without active configuration management the inherent flexibility of the rules file language accelerates entropy and greatly reduces the useful lifespan of the files.

The Solution: Applied Configuration Management

Applied configuration management to the probes rules files has four facets that require management:

· Rules Files – Configuration management maintains their function and their relationship to the NMS tools.

· Knowledge management – Configuration management preserves the attached meaning and disseminates this information to all parties including: management, administrators, and customers.

· Organizational Structure – Configuration management keeps strategic alignment and tactical function as the business continues to morph.

· Business processes – Configuration management ensures seamless integration into the business process flows.

Applying configuration management in this way can seem counter intuitive. After all, IBM Tivoli Netcool is a fault and performance management tool, not a configuration management tool. However, the rules files themselves are living, breathing configuration files that change as the NcKL rules evolve, vendor standards change, and the company/government’s direction shifts. Just as configuration management can be applied to servers, network devices, and firewall configurations, similar sets of approaches can be applied to the rules files.

Applied configuration management requires a two prong strategy to address the logical and human elements of the rules files. Many problems can be solved from pure logic and deduction. Specifically, applying standards and increasing efficiency of the rules files requires no human intervention in most cases. However, attaching and retaining the meaning and purpose of the rules always requires human intervention because such information cannot be logically deduced. Further, in reality some events are more common and are more meaningful than others. Thus an ability to audit what events are processed by which sections of the rules files becomes important. As a result of these pressures, four specific strategies arise:

· Applying standards/increasing efficiency though automated action

· Retaining meaning and purpose attached to the code through human intervention

· Adding visibility tools to render the rambling rules into a more tabular and graphical presentation.

· Adding audit, tracking, and debugging capability so it is clear what section of the rules resulted in particular assignments.

The price of these goals is reduced language flexibility in the form of enforced best practices. How these goals manifest depends on what is required: automated actions or human intervention.

[image: image10.png]Flexible

Clear Efficient

Figure 6: You are now here – Best Practices relocates Rules Files’ location within the language domain

Both applying standards and increasing efficiency reduces the variability of the rules. This can seem counter intuitive since variance reduction is the opposite approach to fault and performance management. In regards to events, fault and performance management flexes to the environment in order to detect all available information on the network and among the monitored elements. For configuration management the less syntax variances and the stricter the rules:

· The less the opportunities for errors.

· The easier errors can be detected.

As a result applied configuration management always strives to reduce variance in the process of applying standards and increasing efficiency.

Retaining the meaning and purpose of the rules files requires human interventions because meaning cannot be logically deduced. As a result variance reduction does not apply. Instead, a multilevel method of coupling the description (code, standard filters, etc) to the meaning (comments, documentation, etc) is required. Further, as the business goals and environment evolves, the meaning attached to the code will translate what needs to change within the code despite changes in the organization structure and staff. Hence the meaning needs to be proactively managed. Unlike the logical counterparts of applied standards and efficiency, there is limited tangible ways to detect incorrect attachment of meaning. As a result, strict and diligent knowledge management is required to slow the progression of entropy that will eventually overcome the solution.

Changing the language to a tabular and graphical presentation can make normally obscure problems and issues clear. This is especially true of holistic issues such as missed or conflicting field assignments for particular events. However this visibility isn't complete. By adding audit, tracking, and debugging capability to the rules the weight of the various sections of rules can be surmised. Thus, it can become clear that certain sections of code with problems but never get evoked can be removed while other minor issues that carry heavy traffic require immediate attention.

In summary, applied configuration management can improve the clarity and useful lifespan of the rules files through:

· Restricting code flexibility.

· Enforcing strict attached knowledge management.

· Using tabular and graphical visualizations into the rules files.

· Adding audit, tracking, and debugging capabilities.

Anatomy of the Rule File Language

Introduction

Language is a tool to convey the meaning of a message and over time to iteratively build knowledge. Examples of languages include: English, mathematics, and programming. IBM Tivoli Netcool probe rules files is another example of a language. Its purpose is individual event processing. The rules files language filters, consolidates, and normalizes events from disparate sources into a common event list by processing one event at a time.

A language’s effectiveness is in its ability to correctly, concisely, and completely convey and build meaning. This is accomplished through the representation and syntax of a language. Thus, the representation and syntax can either enable or block meaning. By changing the language used while preserving the meaning conveyed some unsolvable problems become solvable.

This impact of language upon rendering meaning is easily overlooked, but through the lens of history the impact is seen clearly. Mathematics is one such lens. When the Romans conquered the Greeks, they brought many physical inventions: cement, street lights, and hot water. At the same time they destroyed the syntax and vocabulary of mathematics. The barrier was not a lack of intellect, but rather poor language construction. Without the proper language, knowledge could not be built iteratively. A brief look at the first ten Roman numerals illustrates the problem – I, II, III, IV, V, VI, VII, VIII, IX, X. Multiplication is cumbersome and anti-intuitive. Further the Romans number system started at one and as a result the representation of negative numbers, much less zero, is impossible. As trivial as these barriers seem, the switch of language stopped mathematics in its tracks from before 300 BC until after 1400 AD. It took over 1,700 years for Descartes and others during the 15th century to reinvent algebraic notation and present a terse and concise language to represent variable abstraction as well as complex operators such as multiply and square root. The retooling of mathematics with a new language enabled the invention of everything from trigonometry to calculus within just two hundred years. Without the new language, it is likely the scientific revolution would have never happened.

Through this particular lens of history, it is easy to see the importance of language in enabling a concise, standardized, visualization of meaning in order to build knowledge.

By analyzing the programming rules files language anatomy, both its atomic components and relationships, the range of meanings conveyed by the language can be understood, which is the first step in understanding the strengths and weaknesses of the rules file language and subsequently determining the best practices.

[image: image11.png]Rule Meaning Rendering

Stage 1 Stage 2
Rules Files
TTRAPD
Equation

((1+2)x(3+4)..)

Rules Table

EITTE

Cond1 Cond?... @Severity @Summary .. $1 $Kdentifier... 5Prop... Update Log|

Stage 3

Visualization
JPG Image
Relational Map

¥ Datawarehouse

Etc.

Auto Error Detection
Missed field assignments
Reassigned fields
Co-dependence

I+ Overlapping clauses
Etc...

Figure 7: Three Stages of Rule Decoding

This section describes how to render rules files to glean meaning and purpose that is hidden by the syntax of the language used. This follows three broad stages. The first stage, already discussed, is the rules themselves. The second stage, discussed in the next couple sections converts the programming-like rule syntax into a table and equation. The final step is to extract meaning using the table and equation. The two easiest areas to conquer are discussed: visualization and auto error detection.

Rules File Atomic Components: Data Structures and Fx Statements

Introduction

The first step to understanding the rules file language is recognizing what range of uses the language provides. Rules files provide two primary functions: assignments and flow control. Specifically:

1. Assignments. These include:

a. Omnibus database fields
b. Temporary probe variables
c. Persistent probe properties
d. GUI Display Affect (log, detail, and update statements.)
2. Flow control between groups of assignments. These include:

a. Order of assignment

b. Applicability of assignment
Flow control statements direct which groups of assignments will be executed. Assignments change the values of omnibus database fields, temporary probe variables, or persistent probe properties. These statements can be further deconstructed into two types of elements: fixed or modifier. The modifier elements are evaluated and affect either the flow control or value assignment of the fixed elements. An inventory of the syntax and vocabulary of rules file quickly divide the language into these four areas. (See Table 1: Rules File Language Elements)

	Purpose
	Type
	Statement
	Equation

	Flow control
	Fixed
	if (…) { …}
	*

	Flow control
	Fixed
	} else if () { … }
	+

	Flow control
	Fixed
	} else { … }
	+

	Flow control
	Fixed
	switch (…) { …
	*

	Flow control
	Fixed
	case …:
	+

	Flow control
	Fixed
	Default … }
	+

	Flow control
	Fixed
	Discard*
	. (abort)

	Flow control
	Modifier
	Regmatch
	Condition Variable

	Flow control
	Modifier
	Nmatch
	Condition Variable

	Flow control
	Modifier
	Match
	Condition Variable

	Flow control
	Modifier
	&
	* or Condition Variable

	Flow control
	Modifier
	|
	+ or Condition Variable

Table 16: Rules File Language Elements – Flow Control
* Discard aborts the execution of rules and hence is a flow control element

	Purpose
	Type
	Statement
	Equation

	Assignment
	Fixed
	@Field =
	Assignment Variable

	Assignment
	Fixed
	%Prop =
	Assignment Variable

	Assignment
	Fixed
	$Variable =
	Assignment Variable

	Assignment
	Fixed
	Log(...)*
	Assignment Variable

	Assignment
	Fixed
	details(...)*
	Assignment Variable

	Assignment
	Fixed
	Update(…)*
	Assignment Variable

	Assignment
	Modifier
	"String"
	Assignment Value

	Assignment
	Modifier
	$var1 + $var2
	Assignment Value

	Assignment
	Modifier
	int(extract($float,".*\.[0-9]+$")
	Assignment Value

Table 17: Rules File Language Elements - Assignments

* Log(), details(), update() can be considered assignments in that they change the value of either a log or the current detail values that is displayed in the Omnibus GUI.

Recognizing these base components enables us to naturally split a rules file into base components and determine the relationships between these components. Since the flow control statements will determine whether or not the group of assignments is executed or not, groups of assignments are naturally “attached” to individual flow control statements. Examine the following case:

If ($Node == “foo”) {

 @Severity = 5

 @Type = 2

} else {

 @Severity = 4

 @Type = 1

}

The flow control statement “IF ($Node == “foo”) {…}” determines whether or not the assignments “@Severity = 5” and “@Type = 2” are executed or not. In this way they are attached and the combination of flow control statement with associated assignments can be treated as a single unit. Similarly, the flow control statement “else {…}” or more clearly “if (!($Node==”foo”)) {…} determines whether or not the assignments “@Severity = 4” and “@Type = 1” are executed or not. Thus this pairing of flow control and assignment statements also forms a single unit.

The combination of the condition and its dependent assignment is the basic atomic component of the rules file, which will be referred to as Fx statements.

With the exception of data structures (tables and lookup files), rules files consist entirely of Fx statements. For example, look at the following rules file:

if ($Node = “D1”) {

 @Node=”D1”

 @Location=”Austin”

} else {

 @Node=”Other”

 @Location=”Folsom”

}

Given ELSE is equivalent in this case to $Node != “D1”, this rules file would be converted into two different Fx statements:
A: ($Node = ‘D1’) { @Node=’D1’ @Location=”Austin”}

B: ($Node != ‘D1’) { @Node=”Other” @Location=”Folsom” }

Not all rules files can be so easily converted. There are three special Fx statements that require “special” treatment to be rendered:

1. Root Rule File Assignments

2. Trailing Assignments After an If Statement

3. Empty Else Clause

Root Rule File Assignments

In some cases fields, properties, variables, and log() and details() statements are set at the beginning of the rules file without any conditions. The convention of attaching this set of assignments to the condition “If (1==1) {…}”, an always true condition, can convert this special case into an Fx statement.

For example, the following rules file:

@ Identifier = $Node + $Summary

if ($Node = “D1”) {

 @Node=”D1”

 @Location=”Austin”

} else {

 @Node=”Other”

 @Location=”Folsom”

}

Would be converted into three different Fx statements:

A: (1 = 1) { @Identifier = $Node + $Summary }

B: ($Node = ‘D1’) { @Node=’D1’ @Location=”Austin”}

C: ($Node != ‘D1’) { @Node=”Other” @Location=”Folsom” } #ELSE
It should be noted that this rules file has a special property – all its Fx statements are independent. This means it does not matter in what order the Fx statements are applied. The result will be the same. This concept of independence verses co-dependence will be explored in detail in the next major section.

Trailing Assignments After an If Statement

Another special case is assignments that follow the end of an IF statement. Consider the following rules file:

@ Identifier = $Node + $Summary

if ($Node = “D1”) {

 @Node=”D1”

 @Location=”Austin”

} else {

 @Node=”Other”

 @Location=”Folsom”

}

@Summary = $Summary

In this case the order of the statements does not matter, so the assignment can be added to the first Fx statement without changing the meaning of the rules file:

A: (1 = 1) { @Identifier = $Node + $Summary @Summary = $Summary }

B: ($Node = ‘D1’) { @Node=’D1’ @Location=”Austin”}

C: ($Node != ‘D1’) { @Node=”Other” @Location=”Folsom” } #ELSE

However, this is not always the case. For example,

@ Identifier = $Node + $Summary

if ($Node = “D1”) {

 @Node=”D1”

 @Location=”Austin”

} else {

 @Node=”Other”

 @Location=”Folsom”

}

@Location = @Location + “ USA”

In this case, the order of the statements does matter because the Fx statements have co-dependent relationships between them. To retain the meaning we simply create a new instance of the condition that applies to the assignment and add it to the list of Fx statements.

A: (1 = 1) { @Identifier = $Node + $Summary }

B: ($Node = ‘D1’) { @Node=’D1’ @Location=”Austin”}

C: ($Node != ‘D1’) { @Node=”Other” @Location=”Folsom” } # ELSE

D: (1 = 1) { @Location = @ Location + “USA” }

Note that unlike the previous examples, these statements must be evaluated from top to bottom in order to retain the rules file’s meaning in the Fx format. In the case of a larger rules file, this can result in administration issues. An addition, deletion, movement, or change of one section of rules file can have unexpected consequences to unrelated events. Worse, since the events affected may occur sporadically, the problem could be missed for weeks or months. Once the problem is detected there is no way to immediately identify the problem area. Thus the inclusion of co-dependent relationships complicates the rules’ maintenance.
Empty Else Clause

The final special case is the empty ELSE clause. The rules file syntax allows the coder to leave out the ELSE clause if no assignments occur. However, this can lead to ambiguity. For example,

A: ($Severity > 4) { @Node=’D1’ @Location=”Austin”}

B: ($Severity > 3) { @Node=”Other” @Location=”Folsom” }

Without further clarification these Fx statements can be translated into either:

If ($Severity > 4) {

 @Node=’D1’

 @Location=”Austin”

}

if ($Severity > 3) {

 @Node=”Other”

 @Location=”Folsom”

}

Or into

If ($Severity > 4) {

 @Node=’D1’

 @Location=”Austin”

} else if ($Severity > 3) {

 @Node=”Other”

 @Location=”Folsom”

}

In the case of an event with $Severity = 5, the result would differ depending on how the Fx statements were translated. This is because the ELSE clause is omitted which demarks the end of an if statement.

The problem is solved simply by creating an Fx with a condition but no assignments. For example, the rules file:

@ Identifier = $Node + $Summary

if ($Node = “D1”) {

 @Node=”D1”

 @Location=”Austin”

}

@Location = @Location + “ USA”

Becomes:

A: (1 = 1) { @Identifier = $Node + $Summary }

B: ($Node = ‘D1’) { @Node=’D1’ @Location=”Austin”}

C: ($Node != ‘D1’) { }

D: (1 = 1) { @Location = @ Location + “USA” }

Summary

Through the approach described above the entire contents of the rules file can be converted to data structures and a sequence of Fx statements. How these statements are evaluated depends on their relationships, which is discussed in the next section.

Rules File Relationships Between Atomic Components

Introduction

Since the rules file is a procedurally based rather than object oriented language, the functional relationships are entirely embodied in the relationships between Fx statements. There are very specific ways in which Fx statements can relate. In particular, they can either be independent or co-dependent. Independent relationships are such that the order of the Fx statements does not change the meaning of the statements. Co-dependent relationships involve Fx statements that share or build upon the same variables. As a result, changing the order of co-dependent Fx statements will alter the meaning of those statements.
There are four different independent and five different co-dependent types of relationships between Fx. These relationships can be further generalized, enabling an equation like representation of the rules file using Fx statements joined by the operators: +, *, and ().
By using algebraic rules the Fx statements can be manipulated and retain the same meaning. In particular, associative and communitive rules can be used. Associative rules enable multiplying the Fx statements; for example a(b+c) => ab+ac. Communitive rules enable reordering the Fx statements; for example a(b+c) => a(c+b).
What rules apply to the Fx statements depend on whether the Fx statements are independent or codependent from one another. As stated earlier independent Fx statements can use both associative and communitive rules while co-dependent Fx statements can only use associative rules and retain the same meaning. As a result the number and percentage of co-dependent relationships within the rules files will determine to a large extent the maintainability and thus usable lifespan of the rules files.
Independent Fx Relationships

Independent Fx relationships are not affected by the order of the Fx statements. This is because assignments do not build upon one another. As a result independent Fx statements are not as error prone.

Though assignments are independent in all cases, flow control independence exists for all cases except the Branching Fx statement. This is for two reasons:

· Overlapping Condition Domains of ELSIF
· Co-Dependent Branching Fx with ELSE
Overlapping condition domains of ELSIFs can affect Fx independence because the order of ELSIF may affect what assignments occur. For example, consider the following rules file:

If ($Severity = 5) {

 @Owner = “John Smith”

} else if ($Severity > 4) {

 @Owner = “Jack Jones”

}

If the value of $Severity is 5, the first condition listed will determine who is assigned the event. This occurs because if Severity is 5, both conditions are satisfied. The result is a first come first serve result.

The second threat to Fx clause independence is a compounding effect. If an IF statement is not well defined, the ELSE clause isn’t used as either an unexpected outcome nor as remainder of set evaluation. In this case the ill-defined IF statement results in the ELSE statement containing more than what was expected.

Mitigating these two concerns while restricting Fx creation as much as possible to the following constructs will lead to rules files that are easier to maintain.

	Purpose
	Type
	Description
	Example
	Equation Representation

	Flow Control
	Fixed
	Sequential Fx
	if (…){…} … if (…){…}
	Fx1 * Fx2

	Flow Control
	Fixed
	Nested Fx
	if (…){… if (…){…} …}
	(Fx1 * Fx2)

	Flow Control
	Fixed
	Branching Fx
	if (…){ … } else if (…){…} … else { …}
	(Fx1a + Fx1b … + Fx1n)

	Flow Control
	Fixed
	Implied NUL Else
	if (…){ … }
	(Fx1a + Fx1b)

Table 18: Four Independent Fx Relationship Operations

Representing Rules Files as an Equation of Independent Fx Statements

Assuming there are no overlapping co-dependent Fx relationships, the rules file can be represented in an equation format where Fx statements are represented by variables and the relationship between them is represented by either ‘*’ or ‘+.’ This nomenclature can enable easy rendering and simplification of rules files using algebra. The benefit of this approach is best illustrated by an example.

For example:

If ($Node = “D1”) {

 @Node=”D1”

} else {

 @Node=”D2”

}

If ($Location = “Here”) {

 @Node=”Austin”

} else {

 @Node=”Folsom”

}

This code is translated into the following Fx statements and equation:

a: ($Node = “D1”) { @Node=”D1” }

b: ($Node != “D1”) { @Node=”D2” }

c: ($Location = “Here”) { @Location=”D1” }

d: ($Location != “Here”) { @Location=”D2” }

Equation: (a+b)*(c+d)

If we wanted to represent this code differently but with the same meaning, we could use basic algebra and change the equation to:

Equation: a*c+a*d+b*c+b*d

The multiplication can be represented by either nested if statements or by a logical and operator. Using the logical and operator the four terms convert different but equivalent source code:

a*c: (($Node = “D1” && ($Location = “Here”)) { @Node=”D1” @Location=”D1”}

a*d: (($Node = “D1” && ($Location != “Here”)) { @Node=”D1” @Location=”D2”}

b*c: (($Node != “D1”) && ($Location = “Here”)){ @Node=”D2” @Location=”D1” }

b*d: : (($Node != “D1”) && ($Location != “Here”)) { @Node=”D2” @Location=”D2” }

Finally the addition operations can be converted either into sequential, independent “if{}” statements or into a single “if-else if-else” statement. The result is:

if (($Node = “D1”) && ($Location = “Here”)) {

 @Node=”D1”

 @Location=”D1”

} else if (($Node = “D1”) && ($Location != “Here”)) {

 @Node=”D1”

 @Location=”D2”

}else if (($Node != “D1”) && ($Location = “Here”)){

 @Node=”D2”

 @Location=”D1”

} else if (($Node != “D1”) && ($Location != “Here”)) {

 @Node=”D2”

 @Location=”D2”

}

This new, but equivalent, clause has no ‘else’ statement, because logically there is no need for one. The four clauses cover every outcome. This type of clause illustrates that by multiplying out all compound statements within an equation (which removes all braces) the result is a list of independent terms separated by ‘+’ signs. Each of these terms indicates a possible “path” through the rules file. The resulting equation is a list of all unique paths through the rules file. This expression is key to understanding the general health of the rules files.

If the Fx relationships are independent, then these clauses can reordered without impacting the meaning. Some other examples include:

· a*(c+d) + b*d + b*c

· a*c +b*d+a*d+b*c

· (d+c)*(b+a)

By using independent Fx statements, rules files can be manipulated with minimal unexpected consequences, simplifying maintenance. In fact, the level to which the rules file is mired by co-dependent Fx relationships is largely equal to the effort required to maintain the rules file.

Co Dependent Fx Relationships

	Purpose
	Type
	Description
	Example
	Disruption

	Assignment
	Modifier
	Field, Variable, Properties building
	if (…){ $a="a"} if (…){$a= $a + "b" }
	Breaks communitive rule: a*b is not equivalent to b * a

	Assignment
	Fixed
	Variable, Property name overloading
	if (…) { $tmp=@Node } if (…) {$tmp=@Type}
	Ambiguous variable naming

	Assignment
	Fixed
	Variable, Property no value add abstraction
	if (…) { $tmp=$Node @Node=$tmp }
	Unsimplified equation

	Flow Control
	Modifier
	Field, Variable, Properties Bridge
	if ($Node = "%D1%") {…} if ($Node = "D2") {...}
	Breaks communitive rule: a*b is not equivalent to b * a

	Flow Control
	Fixed
	Discard statement
	if (…) { … discard … }
	Aborts Equation Abruptly

Table 19: Five Co-Dependent Fx Relationship Operations

Co-Dependent Fx relationships cause two or more Fx statements to violate each other’s independence. Specifically, they do not respect the Fx statements’ variable, field, and/or properties encapsulation. In particular, the co-dependent Fx statements update or reference the same variable, field, and/or properties and/or use these references within their condition evaluation. In short, co-dependent Fx relationships violate an object oriented model since the Fx statements do not encapsulate their data from one another. The following table defines five different types of co-dependent Fx relationships:

These five co-dependent Fx relationships create maintenance issues in two possible ways:

1. Temporal flow: There is an order in which the statements can be executed.

2. Applicability: An earlier Fx can prevent the execution of other Fxs. So the order of Fxs matters.

In either case, moving sections of code or changing sections of code can result in unexpected consequences.

Obviously, some codependence is necessary. In the case of enrichment often the existing values will be over written. In other cases temporary variables may be reused over and over again in order to tighten name space and memory use and be clearer on their function and purpose. However, thoughtful consideration along these lines is required to ensure the proper use of codependence in order to not compromise the useful lifespan of the rules files. This can be accomplished through a set of best practices.
Summary

The last two sections demonstrated how the rules files could be broken down into Fx statements and easily manipulated through three sets of operators: +, *, and (). However, visualization of the rules files isn’t trivial. The mttrapd and syslog probe rules files can run into the millions of lines. Finding a way to visualize all this information is the subject of the next section.

Tabular Visualization – Human Centric Probe Rules

Introduction
The previous sections broke down the rules file into a sequential list of Fx statements with an equation representing the relationships among the statements. Though this very succinctly conveys the information, it doesn’t visually present the information in an intuitive manner.
Applying some of the concept from data warehousing can more clearly render the information. When data is presented to the user, the relational fields between the database tables provide unique dimensions into the table. Thus the data transforms into a multi-dimensional hyper cube. The focus is to enable ways to slice and dice the data along each of the relational keys. As a result, the data is often redundant. In this specific case the goal is to balance the two.
The balance is attained through presenting two specific dimensions. The first dimension is temporal or time based. Specifically, the Fx statements are sequentially laid out as rows within the table. The second dimension is quantitative-based . Here each of the columns present the fully nested Fx conditions as well as the field, property, and variable assignments made by the specific Fx clause. The result is a human intuitive and concise view into the meaning of the rules files that enables some holistic views into the data.

The following is an example of raw rules file and the table rendering.
@A=1

%C=1

$A=1

IF ($B>2) {

 @A=$B

 @B=$B

 %C=2

 $B=2

} ELSE {

 IF ($C>3) {

 @C=$C

 %C=3

 %B=3

 %A=3

 $C=3

 }

}

	
	Conditions
	Fields
	Properties
	Variables
	Others

	
	#0
	#1
	#2
	@A
	@B
	@C
	%C
	%A
	%B
	$A
	$B
	$C
	details
	log
	update

	1
	NULL
	
	
	1
	
	
	1
	
	
	1
	
	
	
	
	

	2
	NULL
	$B>2
	
	$B
	$B
	
	2
	
	
	
	2
	
	
	
	

	3
	NULL
	ELSE
	$C>3
	
	
	$C
	3
	3
	3
	
	
	3
	
	
	

	#
	-
	-
	-
	2
	1
	1
	3
	1
	1
	1
	1
	1
	0
	0
	0

Equation: 1 * (2 + 3)
Table 20: Example - Tabular Rules
In the example above the rules are broken into three Fx statements. In each case the nested conditions as well as the various assignments are extracted and the table populated. Finally, the conditions are sorted left to right by increases nested level and the field, properties, variables, and others are each sorted by descending instance count within the rules files.
The result is a graphical presentation that enables a statistical holistic view into the fields, properties, variables, and other assignments that occur within the rules. However, the equation is still needed in some special cases to determine the exact relationship between the sequential rows (i.e. Fx statements) in the table. In this case a number of the empty Fx statements fell out, which resulted in a simplification of the code. Using the equation and table above the new rules files would be:
@A=1 ## FX 1 Statement
%C=1

$A=1

IF ($B>2) { ## FX 2 Statement
 @A=$B

 @B=$B

 %C=2

 $B=2

} ELSIF ($C>3) { ## FX 3 Statement
 @C=$C

 %C=3

 %B=3

 %A=3

 $C=3

}

The simplification of rules files is a natural byproduct of the tabular visualization of the rules files.
Equation and Tabular Rule Clarity Benefits

As a consequence of a concise and complete translation of the rules files, into the tabular rules and associated equation the following key metrics are accessible:
· Total possible Paths and Path Statistics

· Rules File “Cost of Ownership”
· Holistic issues: Field, Variable, Property, and Other (Details(),Log(),Update())
Each of these metrics is discussed below.

Metric - Total Possible Paths and Path Statistics
In an earlier section it was shown how the rules equation actually maps all possible paths through the rules. For example, the code:

If ($Node = “D1”) {

 @Node=”D1”

} else {

 @Node=”D2”

}

If ($Location = “Here”) {

 @Node=”Austin”

} else {

 @Node=”Folsom”

}

Translates into the following Fx statements and equation:

a: ($Node = “D1”) { @Node=”D1” }

b: ($Node != “D1”) { @Node=”D2” }

c: ($Location = “Here”) { @Location=”D1” }

d: ($Location != “Here”) { @Location=”D2” }

Equation: (a+b)*(c+d)

By multiplying through the equation a list of all possible paths through the rules files is obtained. In this case there are four possible paths. The ‘+’ delimits each possible path. The letters represent in sequential order the Fx statements that would be executed for each path.
a*c+a*d+b*c+b*d

Thus, the list of the four possible paths would be:

1: a,c
2: a,d
3: b,c
4: b,d

Given the syslog and mttrapd NcKL based rules contain tens of millions of paths through their files, statistical abstractions are needed to determine their meaning. Two key statistics are useful: total possible paths and Fx path distribution.
Total Possible Paths

This is roughly the number of possible paths through the rules file. It provides a rough measure of the level of complexity in the files.
The metric is relatively easy to calculate. By replacing all variables within the equation by the number 1 and by evaluating the resulting equation, the total number of paths possible through a rules file is determined.
Assuming the equation has been converted into a postfix notation and stored in a stack, the following PERL code can perform the calculation:

my @stack;

for (my $i=0; $i<=$#postfix; $i++) {

 my $op=$postfix[$i];

 if($op eq 'x') {

 push @stack, pop(@stack) * pop(@stack);

 } elsif($op eq '+') {

 push @stack, pop(@stack) + pop(@stack);

 } elsif($op =~ m/^\d+$/) {

 push(@stack,1);

 }

}

Appendix A through Appendix F present summary data from an NcKL based MTTRAPD implementation. In that case there are a large number of total paths:
141,902,464,636,685,000,000,000,000,000

Fx Path Distribution

[image: image12.emf]MTTRAPD Rule File's Path Distribution

100000000

1000000000

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

1E+19

1E+20

1E+21

1E+22

1E+23

1E+24

1E+25

1E+26

1E+27

1E+28

1E+29

1E+30

90 110 130 150 170 190 210 230 250 270 290

Length in Fx Statements

Number of Paths

Figure 8: Fx Path Distribution

Each path possible through the rules files can require a varying number of Fx statements. The distribution of the number Fx statements required for each path gives an idea of the resources and time required as well as the variability from path to path.
Using the NcKL based MTTRAPD example, the graph above describes the distribution of paths against the number of Fx required for the paths. The number of paths is scaled logarithmically. Thus, the majority of paths have between 221 to 249 Fx statements.
The calculation for Fx path distribution is more complex than the calculation for total paths. In this case, each variable is replaced with the expression 1,1. The first 1 represent the Fx length or the number of Fx statement within a path. The second 1 represents the path count or the number of paths that have this Fx statement length. The code iteratively walks through the equation and builds up the Fx path distribution by tracking the Fx length and path count for each Fx length.

Assuming the equation has been converted into a postfix notation and stored in a stack, the following PERL code can perform the calculation:

my @stack;

for (my $i=0; $i<=$#postfix; $i++) {

 my $op=$postfix[$i];

 if($op eq 'x') {

 my $b=pop(@stack); my $a=pop(@stack); ## GRAB LAST TWO VALUES

 my @b=split /;/,$b; my @a=split /;/,$a; ## ARRAY OF ELEMENTS

 my @c; ## BUILD NEW ARRAY

 for (my $k=0; $k<=$#a; $k++) {

 for (my $j=0; $j<=$#b; $j++) {

 my ($aa,$ab)=split /,/,$a[$k]; #Fx Length, Path Count

 my ($ba,$bb)=split /,/,$b[$j]; #Fx Length, Path Count

$c[$aa+$ba]+=$ab*$bb;

 }

 }

 my $newelem;

 for (my $j=0; $j<=$#c; $j++) {

 if ($c[$j]) {

 $newelem.="$j,$c[$j];";

 }

 }

 push(@stack,$newelem);

 ## ADD TOGETHER DISTRIBUTIONS

 } elsif($op eq '+') {

 my $b=pop(@stack); my $a=pop(@stack); ## GRAB LAST TWO VALUES

 my @b=split /;/,$b; my @a=split /;/,$a; ## ARRAY OF ELEMENTS

 my @c; ## BUILD NEW ARRAY

 my $j=0; my $k=0;

 while ($j <= $#b || $k <= $#a) {

 my ($aa,$ab)=split /,/,$a[$k]; #Fx Length, Path Count

 my ($ba,$bb)=split /,/,$b[$j]; #Fx Length, Path Count

 if ($aa == $ba) { ## Fx count matches

 $c[$aa]+=$ab+$bb;

 $k++; $j++;

 } elsif ($j == $#b+1 || ($aa<$ab && $k != $#a+1)) {

$c[$aa]+=$ab;

 $k++;

 } else {

$c[$ba]+=$bb;

 $j++;

 }

 }

 my $newelem;

 for (my $j=0; $j<=$#c; $j++) {

 if ($c[$j]) {

 $newelem.="$j,$c[$j];";

 }

 }

 push(@stack,$newelem);

 } elsif($op =~ m/^\d+$/) {

 push(@stack,'1,1;'); ## Fx length, Count

 } else {

 print "$op ALREADY DONE.\n";

 }

}

One final note is that the actual number of conditions that need to be evaluated might be much larger. For example, every condition in an IF-ELSIF-ELSE statement up until the correction condition will be evaluated. However, this calculation gives a good relative ball park measure.

Metric - Rules File “Cost of Ownership”

Co-dependence is the measure of dependency between the various Fx statements. Such dependencies greatly increase the necessary time and energy needed to maintain the files. As such, this metric can be used as a crude “cost of ownership” metric.
Since there is no ongoing metric for which paths through the rules file is taken, each path is considered with equal weight. An accurate metric can be calculated if the events are tracked with a historical database. In this case a proper weight based on the historical statistics can be applied to each path. However, the calculations in this case can be excessive.

Co-Dependent Path Saturation

[image: image13.png]

Figure 9: Example of Fx Statement Flow

The rules files naturally create a tree like structure where a single entry point branches into multiple exit points. As a result several paths often traverse the same co-dependent relationship. This results in two measures of co dependence:

· Co-Dependent Path Saturation – Measures the impact of co-dependence

· Co-Dependent Fx Relationship Saturation – Measures the amount of rules infected with co-dependence.

Co-dependent path saturation measures the percentage of paths infected with one or more co-dependent relationship. This is calculated by:

(Paths Co-Dependent Effected / Total Number of Paths)

The diagram above illustrates this calculation. In this case there are a total of eight Fx expressions. Three paths are shown through the Fx expressions. The middle Fx expression is co-dependent to the two subsequent paths it spawns. As a result, two of the three possible paths are co-dependent. This results in a 67% (2/3) Co-Dependent Path Saturation.

Co-Dependent Fx Relationship Saturation

Another way to measure co-dependence is through individual links. This is calculated as follows:

(Path Weighted Co-dependent Relationships / All Relationships)
	Path
	From
	To
	Infected?

	1
	2
	1
	

	1
	2
	3
	

	1
	2
	6
	

	1
	1
	3
	

	1
	1
	6
	

	1
	3
	6
	

	2
	2
	4
	

	2
	2
	7
	

	2
	4
	7
	X

	3
	2
	4
	

	3
	2
	5
	

	3
	2
	8
	

	3
	4
	5
	X

	3
	4
	8
	

	3
	5
	8
	

Table 21: Inventory of Fx Statement Relationships

Each path’s individual Fx statements are compared with one another. The table below illustrates this calculation. In this case, there are a total of 15 relationships of which one relationship is used twice for a total of 16. Of the 16 only 2 are infected by co-dependency. This results in a 12.5% (2/16) Co-Dependent Fx Saturation. What this and the previous metric shows is that a few co-dependent relationships (12.5%) can impact a larger percentage of the paths flowing through a rules file (66.7%.)

Metric - Holistic issues: Field, Variable, Property, and Other (Details(),Log(),Update())

One final set of metrics provided by the table approach is visibility into holistic issues. In particular, counts and distribution of the various field, variables, properties, and other tags are readily available. Thus, if a custom field was missed from a set of rules, these would be very visible.
Full Visualization – Computer Centric Probe Rules

Though a two dimensional rendering of the rules file can reveal much about the meaning and implication of the rules, it isn’t complete. There are a whole host of questions touched on in the introduction that are not addressed such as tagging co-dependent relationships and being able to instantly measure their impact. To obtain this level of metrics and visualization standard data warehouse techniques need to be applied. These techniques render a more complete and granular visualization of the data. This is a four step process:

· Select business processes modeled by the data

· Determine the granularity (known as grain) of the data

· Model the data relationships
· Populate the remaining details (known as facts) of the data

Together these steps build a full visualization of the data.

Select business processes modeled by the data

The first step in full visualization of the data is determining what business questions are to be answered. In the case of the rules files the overarching concern is extending their effective lifespan by enabling the efficiency and clarity.
One way to ensure a complete portrait of the business processes to be model is to brainstorm all the pressing questions that cannot be answered by the current visualization. The goal is not to filter any question out at this stage since valid and invalid questions alike inspire more valid questions. As the list grows, the questions naturally break into different categories. Some examples are listed below:
· Error detection

· Meaning tracking

· Historical evolution / Revision control
· Reality to Rules Mapping

· Codependency
· Efficiency

Determine the granularity (known as grain) of the data

The grain measures the indexable attributes as well as the detail to those attributes. The 2D tabular visualization doesn’t provide the ability to track causality - in particular which individual constants, variables, fields, and properties are assigned to variables, fields, and properties. By adding a third dimension these individual contributions can be tracked.
[image: image14.png]Sequential Fx Statements

e

Sources and Values

Conditions and Assignments

Order of Assignments

Figure 10: 4D Temporal Tabular Visualization

However, the inclusion of this third dimension is still lacking in the case of co-dependent relationships between the individual equations. That is, the order of the equations within the Fx statements can change the final values. As a result, a fourth dimension of order is added to the presentation layer of the data warehouse. Together these four dimensions render a complete picture of the causality stream within the rules files.

Model the data relationships

Once the granularity of the data is determined the relationships can be modeled. The above diagram shows the basic 4D relationships that enable slices into the data. In this case all Fx statements and their execution lead to the assignment of the database alerts.status fields, detail assignments, or updates to log or existing field values. By following the variable, property, and field assignment through the Fx statements as dictated by the equation some hidden issues can be determined. For example, the number of times a field is assigned or over assigned for any particular path can be calculated. This can lead to detection of field omissions or covariant relationships and resulting issues of those relationships. An example program and output is provided in the case study section of this document.
Populate the remaining details (known as facts) of the data

The final step is adding the additional details that can be pulled up via the 4D indexing scheme. These will vary from site to site, though most facts will be repeated from site to site. This is left as an exercise for the reader. An example of this analysis is provided indirectly in the case study section of this document.
Graphical Visualization – The Big Picture

One final rendering of the data is graphical in nature. In particular the equation can be converted to a directed graph using the DOT graphical language. The calculation is surprisingly simple. The calculation follows the precedence directed by the brackets. It converts the equation operations addition (+) and multiply (x) into directed graph sections with beginning and end points. As these sections interact the beginning and end points are converted into more directed graph until the entire equation is converted.
Any addition (i.e. A+B) is handled by appending the directed graph, beginning points, and end points together into a single unit (i.e. "A beginning, B beginning; A directed graph, B directed graph; A endpoints, B endpoints") The directed graph portion is actually generated by multiplication. For example (a+b) x (c+d) equates to the directed graph:

Digraph Example {

 a -> c;

 a -> d;

 b -> c;

 b -> d;

}
Assuming the equation has been converted into a postfix notation and stored in a stack, the following PERL code can perform the calculation:

CREATE A DIRECTED GRAPH VIA THE DOT LANGUAGE

my @stack;

for (my $i=0; $i<=$#postfix; $i++) {

 my $op=$postfix[$i];

 if($op eq 'x') {

 my $b=pop(@stack); my $a=pop(@stack); ## GRAB LAST TWO VALUES

 my ($a1,$a2,$a3)=split /;/,$a;

 my ($b1,$b2,$b3)=split /;/,$b; ## ARRAY OF ELEMENTS

 my ($c1,$c2,$c3); ## BUILD NEW ARRAY

 $c1=$a1; ## NEW DANGLING NODES FOR FUTURE LINKS

 $c3=$b3; ## NEW DANGLING NODES FOR FUTURE LINKS

 $c2 = "$a2,$b2"; $c2=~s:,,:,:g; $c2=~s:,$::g; $c2=~s:^,::g;

 ## BUILD AND ADD NEW LINKS

 $a3.=',A'; my @a = split /,/,$a3;

 $b1.=',A'; my @b = split /,/,$b1;

 for (my $k=0; $k<$#a; $k++) {

 for (my $j=0; $j<$#b; $j++) {

$c2 .= ",$a[$k] -> $b[$j]";

 }

 }

 push(@stack,"$c1;$c2;$c3");

 ## ADD TOGETHER DISTRIBUTIONS

 } elsif($op eq '+') {

 my $b=pop(@stack); my $a=pop(@stack); ## GRAB LAST TWO VALUES

 my ($a1,$a2,$a3)=split /;/,$a;

 my ($b1,$b2,$b3)=split /;/,$b; ## ARRAY OF ELEMENTS

 my ($c1,$c2,$c3); ## BUILD NEW ARRAY

 $c1 = "$a1,$b1"; $c1=~s:,,:,:g; $c1=~s:,$::g; $c1=~s:^,::g;

 $c2 = "$a2,$b2"; $c2=~s:,,:,:g; $c2=~s:,$::g; $c2=~s:^,::g;

 $c3 = "$a3,$b3"; $c3=~s:,,:,:g; $c3=~s:,$::g; $c3=~s:^,::g;

 push(@stack,"$c1;$c2;$c3");

 ## NUMERICS POPULATE

 } elsif($op =~ m/^\d+$/) {

 push(@stack,"$op;;$op"); ## Links, Variable

 ## DONE

 } else {

 print "$op AREADY DONE.\n";

 }

}

FINAL PROCESSING

my ($dmy,$stk,$dmy2)=split /;/,$stack[0];

$stk=~s:,:\n:g;

print "digraph mttrapd {\n$stk\n}\n";
However, the resulting diagram can be very confusing. Further analysis of how the Fx statements relate can simplify the graphical presentation of the data.

The complexity comes about when two compound Fx statements appear sequentially within the rules. All exit points from the first Fx statement points to the entry points of the following Fx statement. In a sense the Fx statements are headless. There is no condition that logically groups the compound Fx statement together. As a result the natural tree structure is broken

[image: image15.png]FxA1 FxB1

a2 FxB2
FxAelse FxBzb
FX B2else

FX Belse

Figure 11: Graphical Rule Representation

The simplest solution is to artificially force the tree structure upon the graphical data. This can be done by creating an artificial head for each Fx compound statement, attaching each Fx case off the head, and then linking the heads appropriately.
[image: image16.png]Fx1

FxAt
FxA2

FxAelse|

Fxx2

FxB1

[Fax3

FXB2a

FXB2b

FX Blelse

FX Belse

Figure 12: Graphical Rule Representation - Adding Fx Heads

The result is a must more intuitive graphical representation of the Fx relationships among the rules files.
[image: image17.png]FxX1 ———>FxX2

FxAT FxB1

Fn2 X3
FXBa
FX B2b
FX Belse

FxAelse FX Belse

Figure 13: Graphical Rule Representation - Perfected

The following is the updated code:
#!/usr/bin/perl

##

12/14/2009 Daniel L. Needles Version 0.9

PROGRAM: eqntograph.pl

USAGE: eqntograph.pl

DESCRIPTION: Converts equation to DOT graphing language.

The resulting file can be rendered via graphviz's sfdp.exe

(i.e. cat FILE | "\Program Files\Graphviz2.24\bin\sfdp.exe"

-Tjpg -O -v

##

use strict; ## TRAINING WHEELS ON

my @prefix;

LOAD EQUATION

my $EQN='r.eqn'; ## MTTRAPD EQUATION FILE...

open(EQN,"<$EQN"); my $equation=<EQN>; chomp($equation); push (@prefix,'(');

while ($equation =~ /(\d+|\/|x|\-|\+|\(|\))/g) { push (@prefix, $1); }

push (@prefix,')');

ASSIGNMENTS

my $name=1; #my $level=1;

my $cluster=1; my %name;

ASSIGN FIRST NODE '('

my $z={}; my $x="X$name";

$z->{name}=$x; $z->{nextif}=1; $z->{nextX}=1; $z->{up}=undef;

#$z->{level}=$level;

my $top=$z;

sub additem {

 my $t= shift;

 my $item = shift;

 my $type = shift;

 my $next=($type eq 'IF')?"IF" . $t->{nextif}:"X" . $t->{nextX};

 if ($item) {

 $t->{$next}->{name}=$item;

 $name{$item}++;

 } else {

 $name++;

 my $x="X$name";

 $t->{$next}->{name}=$x;

 $t->{$next}->{nextif}=1;

 $t->{$next}->{nextX}=1;

 }

 $t->{$next}->{up}=$t;

$t->{$next}->{level}=$level;

 if ($type eq 'IF') {

 $t->{nextif}++;

 } else {

 $t->{nextX}++;

 }

}

sub traverse {

 my $t=shift;

 if ($t->{name} =~ /^\d+$/) { return; } ## END LEAF

 if ($t->{nextif} > 1) {

print "subgraph cluster$cluster {\n";

$cluster++;

 for (my $i=1; $i< $t->{nextif}; $i++) {

 print $t->{name},' -> ',$t->{"IF$i"}->{name},' [arrowhead=none]',"\n";

 }

print "}\n";

 }

 for (my $i=1; $i< $t->{nextX}; $i++) {

 print $t->{name},' -> ',$t->{"X$i"}->{name},' [arrowhead=none,color = "red"]',"\n";

 }

 for (my $i=1; $i< $t->{nextif}; $i++) {

 traverse($t->{"IF$i"});

 }

 for (my $i=1; $i< $t->{nextX}; $i++) {

 traverse($t->{"X$i"});

 }

}

SKIP INITIAL '('

for (my $i = 1; $i<=$#prefix; $i++) {

 ## SAVE VARS

 if ($prefix[$i] =~ /^\d+$/) {

 if ($prefix[$i-1] eq '(' || $prefix[$i-1] eq '+') {

 additem($z,$prefix[$i],'IF');

 } elsif ($prefix[$i-1] eq 'x') {

 additem($z,$prefix[$i],'X');

 } else {

 print "E: Invalid expression $prefix[$i-1] $prefix[$i]\n";

 }

 } elsif ($prefix[$i] eq '(') {

$level++;

 if ($prefix[$i-1] eq '(' || $prefix[$i-1] eq '+') {

 additem($z,undef,'IF');

 my $q=$z->{nextif}-1; ## DESCEND INTO EQUATION

 $z=$z->{"IF$q"};

 } elsif ($prefix[$i-1] eq 'x') {

 additem($z,undef,'X');

 my $q=$z->{nextX}-1; ## DESCEND INTO EQUATION

 $z=$z->{"X$q"};

 } else {

 print "E: Invalid expression $prefix[$i-1] $prefix[$i]\n";

 }

 } elsif ($prefix[$i] eq ')') {

$level--;

 $z=$z->{up};

 }

}

print "digraph mttrapd {\n"; ## HEADER

for (my $i=0; $i<=$name; $i++) { ## DECLARE POINTS

 print "X$i [shape=point]\n";

}

foreach my $item (sort {$a<=>$b} keys %name) {

 print "$item [shape=point]\n";

}

traverse($top); ## DECLARE LINKS

print "}\n"; ## FOOTER
The standard NCKL mttrapd rules are too large to render with the graphviz programs dot and neato. However, the graphviz program twopi can render the over one million lines of code, though the result can be difficult to interpret without a program to zoom in and out of the data links.
[image: image18.png]

Figure 14: Graphical Rule Representation (Fx relationships)
Summary

Tabular and graphical visualization of the rules files provides key metrics into several holistic aspects of the rules. Over time these aspects can drift off course as the focus remains among the lines of code. Having higher level metrics can provide visibility into “generic drift” enabling the long term management of the rules. In fact many of these hidden problems can be gleaned programmatically from the rules files. In addition, by restricting the freedom of the syntax in non impacting areas can render more efficient and clear code. In short, the syntax is subjugated to serve meaning and purpose rather than the other way around.

Summary

IBM Tivoli Netcool is a suite a products that specializes in primarily "passive" fault and performance management for networks and systems. At the heart of the product suite is Omnibus and the probes. The probes "passively" take disparate events from traps, syslog, and other feeds and normalize the events and populate the object server. In short, the probes handle the bulk of event processing for the suite. Very detailed instructions are required to normalize every nuance of the disparate events into a common format and presentation. The probes use the rules files language as the syntax to convey these conversions.

[image: image19.png]Flexible

Clear Efficient

Figure 15: You are here – Rules File location within the language domain

There are benefits and draw backs of the rules files approach to event processing. While such an approach provides great flexibility and efficiency, it does so at the expense of clarity. The combination of flexibility and lack of clarity can accelerate the entropy of the rules files and greatly reduce the useful lifespan of the Netcool deployment.

[image: image20.png]Flexible

Clear Efficient

Figure 16: You are now here – Best Practices relocates Rules Files’ location within the language domain

However, this approach can be salvaged through additional best practices. These best practices reduce the flexibility available. As a consequence entropy is held at bay and the useful lifespan of the rules files and the NMS solution as a whole is extended.

Appendix A: General Rule File Statistics
Appendix A through E present data from running the program RulesToTbl.pl against an instance of the MTTRAPD rules files. This appendix presents the general statistics.

	Description
	Count

	Total Columns in Truth table
	2122

	 Max Condition Depth
	69

	 Unique fields, variables, and properties
	2053

	 Variables
	1964

	 Properties
	10

	 Fields
	74

	 Others
	5

	Total Rows in Truth table
	103643

	Total include files
	2150

	Total missing include files
	0

	Total rules file lines (expanded)
	900059

	Total rules file lines (cleaned)
	516866

	Total blank lines
	95460

	Total assignments
	361014

	Total tables
	163

	Total arrays
	7

	Total comments
	210484

	Total bracket starts
	71695

	Total bracket end
	71695

	Total switch statements
	4705

	Total case statements
	38339

	Total default statements
	4705

	Total if statements
	31039

	Total elsif statements
	24935

	Total else (implied)
	31039

	 Populated
	20023

	 Empty
	1848

	 Missing
	20023

	Total Reg Matches
	46748

	Total NMatches
	1318

	Total Matches
	6219

	Possible Paths
	1.41902E+30

Table 22: Example – MTTRAPD General Rules Files Statistics

Appendix B: Field Inventory

Appendix A through E present data from running the RulesToTbl.pl against an instance of the MTTRAPD rules files. This appendix presents the database fields used and counts the instances within the MTTRAPD rules files.
	#
	Field
	Cnt

	1
	@Summary
	6818

	2
	@AlertKey
	5826

	3
	@AlertGroup
	5739

	4
	@OldEventId
	2754

	5
	@Identifier
	2261

	6
	@Agent
	1280

	7
	@GroupSLA
	1154

	8
	@GroupServiceTier
	992

	9
	@GroupServiceType
	915

	10
	@Severity
	838

	11
	@State
	826

	12
	@GroupDeviceType
	761

	13
	@Type
	589

	14
	@GroupCustomer
	299

	15
	@Class
	240

	16
	@DeviceType
	183

	17
	@Region
	75

	18
	@SiteId
	54

	19
	@ObjectValue
	45

	20
	@ObjectInstance
	43

	21
	@ObjectId
	43

	22
	@CMDBName
	38

	23
	@NodeAlias
	34

	24
	@ComponentGroup
	33

	25
	@ComponentName
	32

	26
	@Node
	31

	27
	@CMDBIdentifier
	31

	28
	@PhysicalSiteId
	30

	29
	@TrapSourceIp
	26

	30
	@AlternateIP
	12

	31
	@EventId
	10

	32
	@ProcessReq
	7

	33
	@AlternateIP2
	5

	34
	@URL
	5

	35
	@PhysicalPort
	4

	36
	@DisplayDestination
	3

	37
	@RemoteObjRelate
	3

	38
	@LocalObjRelate
	3

	39
	@ExpireTime
	2

	40
	@PhysicalCard
	2

	41
	@SubCustomer
	1

	42
	@X733EventType
	1

	43
	@LogicTimeout
	1

	44
	@ProbeServer
	1

	45
	@LocalRootObj
	1

	46
	@NmosObjInst
	1

	47
	@X733SpecificProb
	1

	48
	@X733CorrNotif
	1

	49
	@RemotePriObj
	1

	50
	@TaskList
	1

	51
	@NodeAlias_LogicState
	1

	52
	@TrapGeneric
	1

	53
	@CauseType
	1

	54
	@Customer
	1

	55
	@NmosSerial
	1

	56
	@RemoteNodeAlias
	1

	57
	@RemoteRootObj
	1

	58
	@Manager
	1

	59
	@TrapAgentIp
	1

	60
	@SuppressEscl
	1

	61
	@VarBinds
	1

	62
	@OID
	1

	63
	@X733ProbableCause
	1

	64
	@LocalNodeAlias
	1

	65
	@LocalSecObj
	1

	66
	@TrapSpecific
	1

	67
	@CorrScore
	1

	68
	@LocalPriObj
	1

	69
	@RemoteSecObj
	1

	70
	@Service
	1

	71
	@AdvCorrCauseType
	1

	72
	@TrapUpTime
	1

	73
	@NmosCauseType
	1

	74
	@PhysicalSlot
	1

Appendix C: Properties Inventory

Appendix A through E present data from running the RulesToTbl.pl against an instance of the MTTRAPD rules files. This appendix presents the properties used and counts the instances within the MTTRAPD rules files. The properties provide a means to keep information stored in variables from event to event.

	#
	Field
	Cnt

	1
	%PLEvents
	6

	2
	%PLCounter
	4

	3
	%Mean
	4

	4
	%general_load
	4

	5
	%PLStartTime
	4

	6
	%PLMaxTime
	4

	7
	%PLMax
	4

	8
	%PLElapsedTime
	2

	9
	%EPS
	2

	10
	%PLNow
	2

Appendix D: Variable Inventory

Appendix B through H present data from running the RulesToTbl.pl against an instance of the MTTRAPD rules files. This appendix presents the variables used and counts the instances within the MTTRAPD rules files. The variables provide local storage while an event is being processed. The information does not carry over from event to event.

	#
	Field
	Cnt

	1
	$VAR_RelateRO2PO
	45292

	2
	$MOI_RootObj
	45292

	3
	$MOI_PriObj
	37180

	4
	$VAR_RelateRO2SO
	31096

	5
	$VAR_RelateSO2PO
	31096

	6
	$MOI_SecObj
	22308

	7
	$MOI
	14872

	8
	$IntType
	13520

	9
	$OS_EventId
	5841

	10
	$default_Type
	2910

	11
	$default_Severity
	2900

	12
	$default_ExpireTime
	2896

	13
	$MOI_NodeAlias
	2704

	14
	$cerent454AlarmObjectType
	2154

	15
	$cerent454AlarmSt
	2154

	16
	$OS_X733ProbableCause
	2078

	17
	$OS_X733EventType
	2057

	18
	$OS_OsiLayer
	2037

	19
	$OS_X733SpecificProb
	2037

	20
	$ssnglastSequenceno
	1746

	21
	$ssngNodenm
	1745

	22
	$ssngRouterIpAddr
	1745

	23
	$ssngTrapTimeStamp
	1743

	24
	$ssngParentDevicenm
	1743

	25
	$ssngTrapFacility
	1743

	26
	$ssngTrapRepeatCnt
	1743

	27
	$ssngTrapSeverity
	1743

	28
	$ssngTrapReason
	1743

	29
	$ssngParentDeviceSlotNo
	1743

	30
	$ssngParentDeviceIp
	1743

	31
	$ssngTrapMnemonic
	1743

	32
	$ssngTrapmsg
	1699

	33
	$SEV_KEY
	1300

	34
	$Temp
	1204

	35
	$ssngActionRequest
	1163

	36
	$str
	975

	37
	$cerent454AlarmStlook
	718

	38
	$cerent454AlarmObjectnm
	718

	39
	$cerent454AlarmObjectIdx
	718

	40
	$cerent454AlarmLineno
	718

	41
	$cerent454NodeTime
	718

	42
	$cerent454AlarmSlotno
	718

	43
	$cerent454AlarmPortno
	718

	44
	$cerent454AlarmObjectTypelook
	718

	45
	$MOIType
	676

	46
	$VAR_RelateLRO2LSO
	606

	47
	$OS_LocalRootObj
	606

	48
	$VAR_RelateLSO2LPO
	606

	49
	$VAR_RelateLRO2LPO
	606

	50
	$OS_LocalPriObj
	601

	51
	$snmpTrapEnterprise
	596

	52
	$ssngInfo
	491

	53
	$OS_RemoteNodeAlias
	363

	54
	$OS_LocalSecObj
	356

	55
	$opcgrpsTableKey
	348

	56
	$OS_LocalNodeAlias
	347

	57
	$egeneraTrapmsg
	340

	58
	$egeneraTrapSeverity
	340

	59
	$OS_RemotePriObj
	339

	60
	$OS_RemoteRootObj
	339

	61
	$OS_RemoteSecObj
	338

	62
	$VAR_RelateRSO2RPO
	338

	63
	$VAR_RelateRRO2RPO
	338

	64
	$VAR_RelateRRO2RSO
	338

	65
	$MOI_Local
	313

	66
	$IPv4addr
	305

	67
	$ssngStatnm
	297

	68
	$OS_Identifier
	280

	69
	$MOIType_Local
	269

	70
	$preText
	240

	71
	$postText
	240

	72
	$OS_ExpireTime
	198

	73
	$ssngInt
	162

	74
	$ssngIpAddr
	157

	75
	$grpFieldsGlobalExceptLvl
	154

	76
	$grpFieldsGlobalExcptOpcGrp
	154

	77
	$nodeTrapSeverity
	149

	78
	$nodeTrapSequenceno
	149

	79
	$CLARifIER
	145

	80
	$pattern1
	144

	81
	$pattern2
	136

	82
	$ssngSrc
	132

	83
	$ssngDestination
	131

	84
	$noDigitText
	128

	85
	$temp
	117

	86
	$pattern3
	112

	87
	$themsggrpnm
	112

	88
	$ssngstr
	110

	89
	$ssngno
	99

	90
	$pattern4
	96

	91
	$ssngStnm
	92

	92
	$notifDetail
	90

	93
	$Summary
	90

	94
	$notifSrc
	90

	95
	$notifSeverity
	90

	96
	$notifTimeCreated
	90

	97
	$MOI_Remote
	89

	98
	$ssngSlotNo
	88

	99
	$hasMaintPeriod
	84

	100
	$bigipNotifyObjMsg
	83

	101
	$theMsggrpnm
	80

	102
	$UseCiscoIosdefaults
	80

	103
	$MOIType_Remote
	79

	104
	$ssg5000TrapOccurclrTag
	76

	105
	$pattern5
	72

	106
	$ifIdx
	71

	107
	$ssngErrorstr
	69

	108
	$val
	67

	109
	$cBladeIdx
	67

	110
	$cBladeFrameIdx
	67

	111
	$ssngModnm
	66

	112
	$driveScsiID
	66

	113
	$hbano
	66

	114
	$lPannm
	66

	115
	$ssngInfo2
	66

	116
	$hbaChannel
	66

	117
	$cBladenm
	63

	118
	$saNodenm
	62

	119
	$1
	62

	120
	$Integer
	61

	121
	$ssngIntnm
	60

	122
	$2
	60

	123
	$ssngPortnm
	59

	124
	$ssngMemAddrStr
	52

	125
	$OS_Customer
	49

	126
	$pattern6
	48

	127
	$pattern8
	48

	128
	$noHexText
	48

	129
	$pattern7
	48

	130
	$ssngIOSVersionno
	47

	131
	$pSrvnm
	46

	132
	$sysnm
	46

	133
	$pSrvIdx
	46

	134
	$3
	46

	135
	$pSrvLPanIdx
	46

	136
	$opcId
	46

	137
	$cpqHoTrapFlags
	45

	138
	$4
	45

	139
	$systemTime
	44

	140
	$systemnm
	44

	141
	$severityLvl
	44

	142
	$trapSeverity
	44

	143
	$systemUpTime
	44

	144
	$systemDate
	44

	145
	$ssngProcessnm
	44

	146
	$trapGenno
	43

	147
	$trapPath
	43

	148
	$pBladenm
	41

	149
	$pBladeFrameIdx
	41

	150
	$pBladeIdx
	41

	151
	$pattern9
	40

	152
	$noDateText
	40

	153
	$rhTrapSeverity
	39

	154
	$5
	38

	155
	$ssg5000TrapSubFailure
	37

	156
	$snAgGblTrapmsg
	37

	157
	$lportifIdx
	35

	158
	$ssngPortno
	35

	159
	$lportSlotId
	35

	160
	$lportId
	34

	161
	$lportPportId
	34

	162
	$ssngMACAddr
	34

	163
	$rhTrapModifier
	33

	164
	$1_NoDate
	32

	165
	$pattern10
	32

	166
	$1_NewText
	32

	167
	$ssngSlotno
	31

	168
	$timedata
	31

	169
	$pportSlotId
	31

	170
	$6
	30

	171
	$oaLdCardLoopBack
	30

	172
	$oaLdCardEntityLoopback
	30

	173
	$cmdbIpTableKey
	30

	174
	$monitoredIpAddr
	30

	175
	$ssngIpAddr2
	29

	176
	$ssngUsernm
	29

	177
	$7
	29

	178
	$spAlertID
	29

	179
	$pportId
	28

	180
	$8
	28

	181
	$spvcAddrifA
	28

	182
	$OID4
	27

	183
	$OID12
	27

	184
	$OID7
	27

	185
	$OID8
	27

	186
	$OID18
	27

	187
	$OID16
	27

	188
	$OID5
	27

	189
	$OID13
	27

	190
	$OID17
	27

	191
	$OID19
	27

	192
	$OID9
	27

	193
	$OID10
	27

	194
	$ssngAlertType
	27

	195
	$OID2
	27

	196
	$OID14
	27

	197
	$OID1
	27

	198
	$OID6
	27

	199
	$OID11
	27

	200
	$OID3
	27

	201
	$OID15
	27

	202
	$OID20
	27

	203
	$13
	26

	204
	$19
	26

	205
	$20
	26

	206
	$9
	26

	207
	$18
	26

	208
	$ssg5000TrapCardType
	26

	209
	$11
	26

	210
	$12
	26

	211
	$17
	26

	212
	$15
	26

	213
	$16
	26

	214
	$OPTION_TypeFieldUsage
	26

	215
	$10
	26

	216
	$14
	26

	217
	$pimFrameIdx
	25

	218
	$applicationLPanIdx
	25

	219
	$applicationnm
	25

	220
	$pimnm
	25

	221
	$applicationIdx
	25

	222
	$pimIdx
	25

	223
	$pattern11
	24

	224
	$mplsTunEgressLSRId
	24

	225
	$pattern12
	24

	226
	$sensornm
	24

	227
	$mplsTunIngressLSRId
	24

	228
	$pattern15
	24

	229
	$loadBalancerLPanIdx
	24

	230
	$loadBalancerIdx
	24

	231
	$loadBalancernm
	24

	232
	$pattern14
	24

	233
	$sensorValue
	24

	234
	$ssngIntID
	24

	235
	$pattern13
	24

	236
	$bladeFrameIdx
	24

	237
	$bladeFramenm
	24

	238
	$sensorThresh
	24

	239
	$key
	22

	240
	$ssg5000TrapCOC3STM1Port
	22

	241
	$tzoffsetHour
	22

	242
	$sBladeIdx
	22

	243
	$sBladenm
	22

	244
	$sBladeFrameIdx
	22

	245
	$noVal
	22

	246
	$spinggrp
	21

	247
	$ssngSlotnm
	21

	248
	$pvcFailureReasonCode
	21

	249
	$ssngSt
	21

	250
	$ssnggrpnm
	21

	251
	$oaLdCardPortsSlotno
	20

	252
	$saBrdno
	20

	253
	$lPanIdx
	20

	254
	$ifDescr
	18

	255
	$oaLdCardPortsLoopback
	18

	256
	$ssg5000TrapProcessorId
	18

	257
	$port
	18

	258
	$ssngReason
	17

	259
	$ssngProcessno
	17

	260
	$saPodno
	17

	261
	$slot
	17

	262
	$pattern19
	16

	263
	$pattern16
	16

	264
	$ospfRouterId
	16

	265
	$instance
	16

	266
	$ospfPacketType
	16

	267
	$opcInstText
	16

	268
	$jnxFruType
	16

	269
	$pattern18
	16

	270
	$channel
	16

	271
	$pnniCode
	16

	272
	$snOspfRouterId
	16

	273
	$tmpText1
	16

	274
	$pattern17
	16

	275
	$onsVsvrnm
	16

	276
	$ssngValue
	16

	277
	$no
	16

	278
	$Octetstr
	15

	279
	$cpqSsChassisnm
	15

	280
	$cpqSsChassisTime
	15

	281
	$now
	15

	282
	$pdosAnomalyClassification
	14

	283
	$maintPeriodTableKey
	14

	284
	$pdosAnomalyDuration
	14

	285
	$spvcConfigFailureCode
	14

	286
	$pdosAnomalyReSrc
	14

	287
	$saPortno
	14

	288
	$pdosUrl
	14

	289
	$eventAlarmType
	14

	290
	$pdosAnomalyId
	14

	291
	$pdosAnomalyLinkPercent
	14

	292
	$ssg5000TrapOverloadRsrcType
	14

	293
	$pdosAnomalyStart
	14

	294
	$eventSeverity
	14

	295
	$pdosAnomalyDirection
	14

	296
	$varBinds
	14

	297
	$pdosAnomalyRouterInts
	14

	298
	$eventCause
	14

	299
	$ssngBayId
	14

	300
	$ssngChannelnm
	13

	301
	$rhTrapEventTime
	13

	302
	$rhTrapSeveritylook
	13

	303
	$cpqDaCntlrHwLocation
	13

	304
	$ssngTimeInSec
	13

	305
	$ssngCommandnm
	13

	306
	$oaLdRedOptPrimaryRx
	12

	307
	$vBladeIdx
	12

	308
	$oaLdRedOptSecondaryRx
	12

	309
	$ssngVersionStr
	12

	310
	$oaLdCardEntityOptAccRx
	12

	311
	$t2
	12

	312
	$oaLdCardEntityOptDwdmRx
	12

	313
	$oaLdCardOptAccRx
	12

	314
	$ssg5000TrapSSGHostAddr
	12

	315
	$ssngRouternm
	12

	316
	$AmsPriObjText
	12

	317
	$nHostStID
	12

	318
	$rhTrapDescription
	12

	319
	$opcInst
	12

	320
	$t5
	12

	321
	$vBladenm
	12

	322
	$ssngNeighbor
	12

	323
	$vBladeFrameIdx
	12

	324
	$spCollector
	12

	325
	$rhTrapSeqno
	12

	326
	$t4
	12

	327
	$t1
	12

	328
	$oaLdCardPortsLink
	12

	329
	$ssngUnitno
	12

	330
	$oaLdCardOptDwdmRx
	12

	331
	$t3
	12

	332
	$rhTrapModifierlook
	11

	333
	$ssngPeernm
	11

	334
	$tzoffset
	11

	335
	$managementDomainIdx
	11

	336
	$vBladePBladeIdx
	11

	337
	$tzoffsetMins
	11

	338
	$spRouter
	11

	339
	$sysUpTime
	11

	340
	$originIp
	10

	341
	$cardPhysicalSlotId
	10

	342
	$ssngErrorno
	10

	343
	$ssngCallID
	10

	344
	$MIBFileNotNull
	10

	345
	$datetimestr
	10

	346
	$onsVolumenm
	10

	347
	$ssngTunnm
	9

	348
	$ssngOpcode
	9

	349
	$OS_NodeAlias
	9

	350
	$ifAdminStat
	9

	351
	$IntType
	9

	352
	$IntFailureReasonCode
	9

	353
	$ssngMemSize
	9

	354
	$sysDescr
	9

	355
	$ssg5000TrapSlotId
	9

	356
	$rhZonenm
	9

	357
	$ifOperStat
	9

	358
	$ssngmsgId
	9

	359
	$rhZoneId
	9

	360
	$ssngData
	9

	361
	$ssg5000TrapPortId
	8

	362
	$cikePeerRemoteAddr
	8

	363
	$match
	8

	364
	$jnxFruSlot
	8

	365
	$cBladeEthnm
	8

	366
	$jnxFruL1Idx
	8

	367
	$ssngMemAddrStr2
	8

	368
	$ssngPwrSupno
	8

	369
	$snOspfPacketType
	8

	370
	$pattern20
	8

	371
	$eventText
	8

	372
	$cktSrcifIdx
	8

	373
	$spMitigationID
	8

	374
	$preText1
	8

	375
	$postText1
	8

	376
	$ssngEventType
	8

	377
	$matchtext
	8

	378
	$ssngLinkID
	8

	379
	$ssngClockSrc
	8

	380
	$mplsTunIdx
	8

	381
	$ifType
	8

	382
	$tempCmdbIpSitenm
	8

	383
	$loadBalTrapmsg
	8

	384
	$delayUntil
	8

	385
	$ssngChannelno
	8

	386
	$ospfLsdbType
	8

	387
	$cikePeerLocalAddr
	8

	388
	$jnxFruL3Idx
	8

	389
	$onsTrapDescstr
	8

	390
	$nodeBillingSrv
	8

	391
	$jnxFrunm
	8

	392
	$eventObject
	8

	393
	$eventSequenceCnter
	8

	394
	$diskId
	8

	395
	$ospfConfigErrorType
	8

	396
	$cBladeEthIdx
	8

	397
	$jnxFruContentsIdx
	8

	398
	$eventCreatedTime
	8

	399
	$jnxFruL2Idx
	8

	400
	$ssngControllerID
	8

	401
	$mplsTunInstance
	8

	402
	$eventObjectnm
	8

	403
	$ssngTestnm
	7

	404
	$ssngModemnm
	7

	405
	$poolIdx
	7

	406
	$trapIpAddr
	7

	407
	$vbrAtmSpvcRemoteVbrPortAddr
	7

	408
	$ssg5000TrapIPSECTunAlarmId
	7

	409
	$tcpPort
	7

	410
	$eventIdx
	7

	411
	$poolnm
	7

	412
	$cirAtmSpvcVccRemCePortAddr
	7

	413
	$pdosAnomalyProto
	7

	414
	$ssngSrvnm
	7

	415
	$frAtmSpvcVccDlciA
	7

	416
	$slbEntity
	7

	417
	$bgpPeerRemoteAddr
	7

	418
	$atmAtmSpvcVccVpiA
	7

	419
	$VirtUNIifIdx
	7

	420
	$atmAtmSpvcVccVciA
	7

	421
	$fcEosFruStat
	7

	422
	$atmAtmSpvcVccRmtAtmPortAddr
	7

	423
	$displaynm
	7

	424
	$entPhysicalIdx
	7

	425
	$vtpVlanIdx
	7

	426
	$VirtUNIVUNIId
	7

	427
	$ssg5000TrapSCSSrvType
	7

	428
	$LsrIpAddr
	6

	429
	$mplsL3VpnVrfnm_Raw
	6

	430
	$ifnm
	6

	431
	$fcEosPortOpStat
	6

	432
	$cpqFcTapeDriveScsiBus
	6

	433
	$cpqFcaAccelBoxIoSlot
	6

	434
	$ssngEventno
	6

	435
	$nSvcStID
	6

	436
	$ssg5000TrapPatchSyncStat
	6

	437
	$nHostStType
	6

	438
	$cesRSrvIpAddrType
	6

	439
	$eventType
	6

	440
	$jnxContentsL2Idx
	6

	441
	$ssngStat
	6

	442
	$OS_AdvCorrCauseType
	6

	443
	$cesRealSrvnm
	6

	444
	$cpqFcTapeDriveScsiLun
	6

	445
	$onsTrapHwEntityIdx
	6

	446
	$mplsTunOperStat
	6

	447
	$jnxContentsL1Idx
	6

	448
	$ssngPortno2
	6

	449
	$LsrLabelSpace
	6

	450
	$mplsLdpEntityIdx
	6

	451
	$cpqFcTapeCntlrWWN
	6

	452
	$jnxContentsL3Idx
	6

	453
	$notifyVsanIdx
	6

	454
	$jnxContentsContainerIdx
	6

	455
	$ssngSession
	6

	456
	$cpqDaPhyDrvStat
	6

	457
	$mplsTunAdminStat
	6

	458
	$mplsL3VpnVrfnm
	6

	459
	$ssngSocketID
	6

	460
	$cpqFcTapeDriveScsiTarget
	6

	461
	$jnxContentsDescr
	6

	462
	$mplsLdpEntityLdpId
	6

	463
	$jnxFruOfflineReason
	6

	464
	$cesRSrvIpAddr
	6

	465
	$PeerLsrLabelSpace
	5

	466
	$snOspfVirtifStatNeighbor
	5

	467
	$wmanifBsSsnotifMacAddr
	5

	468
	$vsanIdx
	5

	469
	$snOspfifStatIpAddr
	5

	470
	$mplsLdpPeerLdpId
	5

	471
	$ssngIntCnt
	5

	472
	$ssngIdxno
	5

	473
	$ospfifIpAddr
	5

	474
	$ssngControllerno
	5

	475
	$ssg5000TrapOverloadLvl
	5

	476
	$subagtRootno
	5

	477
	$ssngAreaID
	5

	478
	$userIdx
	5

	479
	$entPhysicalnm
	5

	480
	$PeerLsrIpAddr
	5

	481
	$lportISDNDestAddr
	5

	482
	$cipSecTunActiveTime
	5

	483
	$spMitigationnm
	5

	484
	$lportISDNSrcAddr
	5

	485
	$ospfVirtifAreaId
	5

	486
	$ssngTimernm
	5

	487
	$snOspfVirtifStatAreaID
	5

	488
	$ssngATMInt
	5

	489
	$usernm
	5

	490
	$ospfVirtifNeighbor
	5

	491
	$sessionnotifId
	5

	492
	$subagtnm
	5

	493
	$ssngLCID
	5

	494
	$vantivegrp
	5

	495
	$ssngLineNo
	5

	496
	$mplsVpnVrfnm
	5

	497
	$ssngEventnm
	5

	498
	$spingerIp
	5

	499
	$cpqDaSpareStat
	5

	500
	$ospfAddrLessif
	5

	501
	$networkReSrcnm
	4

	502
	$tempMsggrpnm
	4

	503
	$ospfLsdbRouterId
	4

	504
	$scsiDiskReSrcnm
	4

	505
	$cktAtmVCI
	4

	506
	$trapSlotno
	4

	507
	$ssngLCPos
	4

	508
	$VirtIntfConfigVi
	4

	509
	$ssg5000TrapOC3STM1E1AlmId
	4

	510
	$executableReSrcIdx
	4

	511
	$ssngmsgType
	4

	512
	$clmLicenseFeaturenm
	4

	513
	$networkReSrcIdx
	4

	514
	$isSrv
	4

	515
	$scsiDiskReSrcIdx
	4

	516
	$s5ChasComOperSt
	4

	517
	$grpFieldsTableKey
	4

	518
	$ssngSequenceno
	4

	519
	$jnxOperatingSt
	4

	520
	$executableReSrcnm
	4

	521
	$failoverPolicyLPANIdx
	4

	522
	$cpqDaTapeDrvScsiIdIdx
	4

	523
	$cktAtmVPI
	4

	524
	$snOspfLsdbType
	4

	525
	$cpqDaTapeDrvFwRev
	4

	526
	$fcTrunkifOperStatCause
	4

	527
	$instid
	4

	528
	$nfsReSrcnm
	4

	529
	$nHostStIDlook
	4

	530
	$cBladeHbanm
	4

	531
	$ssngSubslotNo
	4

	532
	$jnxVpnPwVpnType
	4

	533
	$cbgpPeerAddrFamilySafi
	4

	534
	$networkReSrcLPANIdx
	4

	535
	$ssngAppnm
	4

	536
	$ssngmsgLength
	4

	537
	$pdosAnomalyTcpFlags
	4

	538
	$healthMonitorIdx
	4

	539
	$cpqFcaCntlrModel
	4

	540
	$searchKey
	4

	541
	$cpqDaTapeDrvLunIdx
	4

	542
	$cpqFcTapeLibraryScsiBus
	4

	543
	$failoverPolicynm
	4

	544
	$ssngmsgnm
	4

	545
	$2_NoDate
	4

	546
	$nfsReSrcIdx
	4

	547
	$ssngSelectornm
	4

	548
	$spUsageType
	4

	549
	$sidaAlertMsg
	4

	550
	$executableReSrcLPANIdx
	4

	551
	$cBladeHbaIdx
	4

	552
	$stpxSpanningTreeType
	4

	553
	$cpqFcTapeLibraryScsiTarget
	4

	554
	$rEthnm
	4

	555
	$mplsLdpSesSt
	4

	556
	$ssngTemperaturestr
	4

	557
	$egpNeighAddr
	4

	558
	$cpqDaTapeDrvBusIdx
	4

	559
	$cpqDaTapeDrvCntlrIdx
	4

	560
	$cbgpPeerAddrFamilyAfi
	4

	561
	$ssngRouternm2
	4

	562
	$cpqDaAccelStat
	4

	563
	$cpqFcaAccelTotalMem
	4

	564
	$n
	4

	565
	$snOspfLsdbLsId
	4

	566
	$spMitigationStart
	4

	567
	$rttMonCtrlAdminIdx
	4

	568
	$ospfLsdbLsid
	4

	569
	$ssngCardno
	4

	570
	$currentMedia
	4

	571
	$healthMonitorLPANIdx
	4

	572
	$snOspfConfigErrorType
	4

	573
	$cpqDaTapeDrvSerialno
	4

	574
	$portEntry
	4

	575
	$s5ChasComGrpIndx
	4

	576
	$rttMonCtrlAdminTag
	4

	577
	$ssngIntnm2
	4

	578
	$cpqFcTapeLibraryScsiLun
	4

	579
	$ssngAccessStr
	4

	580
	$cpqDaTapeDrvnm
	4

	581
	$failoverPolicyIdx
	4

	582
	$cktSrcDlci
	4

	583
	$nfsReSrcLPANIdx
	4

	584
	$healthMonitornm
	4

	585
	$rEthIdx
	4

	586
	$s5ChasComIndx
	4

	587
	$spManagedObject
	4

	588
	$ModType
	4

	589
	$sidaAlertTimeStamp
	4

	590
	$ipAddr
	4

	591
	$VirtIntfConfigif
	4

	592
	$oaDevTrapsPortsifAlias
	4

	593
	$nHostnm
	4

	594
	$bigipNotifyObjNode
	4

	595
	$OS_CorrScore
	4

	596
	$logOnly
	4

	597
	$opcIdText
	4

	598
	$trapModemCnt
	4

	599
	$s5ChasComSubIndx
	4

	600
	$saFrmIwfHandle
	4

	601
	$ssngNextHop
	4

	602
	$ssngInterruptLvl
	4

	603
	$ssngErrorStatno
	4

	604
	$rttMonHistoryCollectionAddr
	4

	605
	$scsiDiskReSrcLPANIdx
	4

	606
	$cpwVcOperStatStart
	4

	607
	$clmLicenseFeaturenm_Raw
	4

	608
	$ssngProcesskey
	4

	609
	$cipSecSpiProtocol
	4

	610
	$enterprise
	4

	611
	$ssngListno
	4

	612
	$wmanifSsMacAddr
	4

	613
	$jnxVpnifVpnType
	4

	614
	$s5ChasComType
	4

	615
	$entPhysicalVendorType
	4

	616
	$snOspfLsdbRouterId
	4

	617
	$ciscoFlashDevicenm
	3

	618
	$cesSrvFarmRSrvAdminStat
	3

	619
	$cpqDaTapeLibraryFWRev
	3

	620
	$ssg5000TrapL2tpTunType
	3

	621
	$diskIdOctets
	3

	622
	$nSvcNotifyType
	3

	623
	$ssngRequestID
	3

	624
	$jnxFruLastPWROff
	3

	625
	$wamCategory
	3

	626
	$trapLogIdx
	3

	627
	$cpqFcTapeDriveCntlrIdx
	3

	628
	$oaDevUpgrProtocolApp
	3

	629
	$cpqDaTapeLibraryModel
	3

	630
	$cpqDaTapeLibrarySerialno
	3

	631
	$jnxFruLastPWROn
	3

	632
	$saspSt
	3

	633
	$cpqFcTapeDriveModel
	3

	634
	$fruStat
	3

	635
	$Details
	3

	636
	$cerent454ThreshDetectType
	3

	637
	$nHostNotifyType
	3

	638
	$cesSrvFarmnm
	3

	639
	$cpqDaPhyDrvIdx
	3

	640
	$pportType
	3

	641
	$authAddr
	3

	642
	$ssngSubnetMask
	3

	643
	$cpqScsiPhyDrvStat
	3

	644
	$alarmCardReasonCode
	3

	645
	$cpLastEvent
	3

	646
	$cpqDaTapeLibraryCntlrIdx
	3

	647
	$cpqFcTapeDriveSerialno
	3

	648
	$cpqFcaAccelserialno
	3

	649
	$trapTunType
	3

	650
	$ssg5000TrapRouteCntAction
	3

	651
	$snOspfPacketSrc
	3

	652
	$ssg5000TrapConfigChgAlarmId
	3

	653
	$cpqDaPhyDrvFWRev
	3

	654
	$rhTrapDynFilterAction
	3

	655
	$cpqFcaCntlrBoxIoSlot
	3

	656
	$mplsL3VpnVrfPerfCurrnoRoutes
	3

	657
	$aal2TrunkConfigif
	3

	658
	$managementDomainConfigRev
	3

	659
	$cpqFcTapeDriveLocation
	3

	660
	$svcAtmConfigSigOperStat
	3

	661
	$cesSrvFarmRSrvOperStat
	3

	662
	$Identifier
	3

	663
	$nHostNotifyno
	3

	664
	$ssngMemAddrStr3
	3

	665
	$summaryLength
	3

	666
	$cpqDaPhyDrvCntlrIdx
	3

	667
	$ssngBmastr
	3

	668
	$ssngLSAID
	3

	669
	$cesRSrvOperStat
	3

	670
	$oaLdCardPortsLoopBack
	3

	671
	$ssg5000TrapRouteCntAlarmId
	3

	672
	$aal2TrunkConfigVpi
	3

	673
	$Port
	3

	674
	$cpqDaPhyDrvBusno
	3

	675
	$cpqFcTapeDriveFWRev
	3

	676
	$cpqDaTapeLibraryScsiLun
	3

	677
	$cpqDaTapeLibraryScsiBus
	3

	678
	$bgpPeerLastError
	3

	679
	$cesRSrvAdminStat
	3

	680
	$lportPrivateNet
	3

	681
	$ssngMetricNo
	3

	682
	$ssngmsgSize
	3

	683
	$cpqDaPhyDrvSerialno
	3

	684
	$mplsLspnm
	3

	685
	$Slot
	3

	686
	$perceivedSeverity
	3

	687
	$subagtComment
	3

	688
	$whyReload
	3

	689
	$bgpPeerSt
	3

	690
	$aal2TrunkConfigVci
	3

	691
	$ssngCommandno
	3

	692
	$cesSrvFarmRSrvBkPort
	3

	693
	$cpqDaTapeLibraryScsiTarget
	3

	694
	$ospfPacketSrc
	3

	695
	$cpqDaLogDrvStat
	3

	696
	$ssngStreamno
	3

	697
	$sidaAlertImpact
	3

	698
	$mplsPathnm
	3

	699
	$fruHistoryClass
	3

	700
	$fruHistoryEvent
	3

	701
	$cpqFcaHostCntlrStat
	3

	702
	$cpqDaPhyDrvModel
	3

	703
	$ssngControllerSubID
	3

	704
	$ciscoFlashDeviceIdx
	3

	705
	$locifReason
	3

	706
	$probableCauseDescription
	3

	707
	$cpStat
	3

	708
	$cpwVcIdxEnd
	2

	709
	$nbsDevAuthenticationReject
	2

	710
	$swSysBridgeIdx
	2

	711
	$ssg5000TrapBELSPAlarmId
	2

	712
	$lportBandwidthAllocProtCallFail
	2

	713
	$atmacctASAddrPri
	2

	714
	$cktFailPort
	2

	715
	$ciscoFlashDeviceMinPartSize
	2

	716
	$cpimLastErrorgrp
	2

	717
	$connUnitEventType
	2

	718
	$cktSvcCallingParty
	2

	719
	$fcnmSrvRejectReasonCode
	2

	720
	$ssngVCId
	2

	721
	$sysUptime
	2

	722
	$nodeConsoleUptime
	2

	723
	$ssngDeviceno
	2

	724
	$zonedefaultZoneBehaviour
	2

	725
	$jnxRedundancySt
	2

	726
	$StatUpdateTime
	2

	727
	$nSvcAttempt
	2

	728
	$nodeTime
	2

	729
	$ssg5000TrapSCSSyncAlarmId
	2

	730
	$ssngShelfNo
	2

	731
	$ssg5000TrapMPLSINTFAlarmId
	2

	732
	$frAtmSpvcVccVpiB
	2

	733
	$ccmHistoryEventConfigSrc
	2

	734
	$ssg5000TrapConfigObjectId
	2

	735
	$cmNotifVirtContextnm
	2

	736
	$entPhysicalClass
	2

	737
	$certificateSrv
	2

	738
	$sidaAlertEventStat
	2

	739
	$cpimLastErrorRPType
	2

	740
	$sidaAlertSrcAddr
	2

	741
	$machineIP
	2

	742
	$indicationTime
	2

	743
	$slbRealSt
	2

	744
	$nHostLastCheck
	2

	745
	$spFingerprintnm
	2

	746
	$tcpConnSt
	2

	747
	$ceAlarmHistSeverity
	2

	748
	$latestTime
	2

	749
	$wmanifBsDynSrvType
	2

	750
	$snmpManagerAddr
	2

	751
	$cbgpPeerPrefixAdminLimit
	2

	752
	$ssg5000TrapLDPAlarmId
	2

	753
	$cpqFcTapeLibraryDoorStat
	2

	754
	$eventRepeatCnt
	2

	755
	$saAtm25ifLosSeverity
	2

	756
	$cesSrvFarmRSrvStDescr
	2

	757
	$cpqFcTapeLibraryStat
	2

	758
	$nodeUsernm
	2

	759
	$oc3APSWorkingLineSignalStat
	2

	760
	$cpimLastErrorRP
	2

	761
	$spIntIdx
	2

	762
	$ospfLsdbAreaId
	2

	763
	$cpqFcaPhyDrvBusno
	2

	764
	$CommId
	2

	765
	$nHostAttempt
	2

	766
	$portStat
	2

	767
	$cpqFcTapeDriveStat
	2

	768
	$tmpVal2
	2

	769
	$firstIncomingTime
	2

	770
	$jnxLdpInstancenm
	2

	771
	$onsClusterGwnm
	2

	772
	$pdosAnomalyRouter
	2

	773
	$nSvcDurationSec
	2

	774
	$cpqFcaPhyDrvBay
	2

	775
	$alertType
	2

	776
	$eventStat
	2

	777
	$ssngSlotNo2
	2

	778
	$jnxLdpLspFec
	2

	779
	$ssngMaxPrefixCnt
	2

	780
	$sidaAlertSrcAddrType
	2

	781
	$cpqDaSpareCntlrIdx
	2

	782
	$ciscoEnvMonFanStatDescr
	2

	783
	$cpwVcIdx
	2

	784
	$jnxVpnPwIdx
	2

	785
	$fddimibPORTSMTIdx
	2

	786
	$cpqDaAccelBadData
	2

	787
	$jnxVpnPwVpnnm
	2

	788
	$slbVSrvStChangeDescr
	2

	789
	$lportPPPNegotiationFailCode
	2

	790
	$connUnitId
	2

	791
	$cpqFcTapeLibraryLocation
	2

	792
	$wamText
	2

	793
	$ssngVoltageLvl
	2

	794
	$cldeVirtProtocol
	2

	795
	$fracctControl
	2

	796
	$ssg5000TrapRSVPTEAlarmId
	2

	797
	$nHostgrpnm
	2

	798
	$fcTrunkifOperStatCauseDescr
	2

	799
	$ciscoEnvMonSupplySt
	2

	800
	$cpqFcaCntlrStat
	2

	801
	$ssg5000TrapSysmonAlarmId
	2

	802
	$dot1xAuthBackendAuthSt
	2

	803
	$cpqDaPhyDrvFailureCode
	2

	804
	$cirAtmSpvcVccifB
	2

	805
	$otherSeverity
	2

	806
	$ssngCardStnm
	2

	807
	$cktNdcifIdx
	2

	808
	$ssngResult
	2

	809
	$jnxLdpLspFecLen
	2

	810
	$slbVSrvClassMap
	2

	811
	$ssngTemperatureValue
	2

	812
	$ssngPeerId
	2

	813
	$ssngPrefix
	2

	814
	$chassisMajorAlarm
	2

	815
	$frCircuitDlci
	2

	816
	$ciscoEnvMonSupplyStatDescr
	2

	817
	$policyConfigChassisModemThres
	2

	818
	$ssg5000TrapVPNMeshAlarmId
	2

	819
	$cpqSsBoxFanStat
	2

	820
	$snOspfNbrRtrId
	2

	821
	$mplsVpnVrfPerfCurrnoRoutes
	2

	822
	$snOspfLsdbAreaId
	2

	823
	$cktSvcCalledParty
	2

	824
	$msg
	2

	825
	$ssg5000TrapSCSSrvAlarmId
	2

	826
	$frAtmSpvcVccVciB
	2

	827
	$currTimeGMT
	2

	828
	$nHostDurationSec
	2

	829
	$oaDevTrapsPortsSlotPortno
	2

	830
	$vtpVlanPortLocalSegment
	2

	831
	$ssg5000TrapConnectionnm
	2

	832
	$noEntries
	2

	833
	$ssg5000TrapIPSECTunStart
	2

	834
	$spUsernm
	2

	835
	$ciscoEnvMonTemperatureSt
	2

	836
	$chanSlotId
	2

	837
	$ssngVCI
	2

	838
	$ssg5000TrapL2tpTunAlarmId
	2

	839
	$cpqFcTapeLibraryModel
	2

	840
	$oaSfpInfoSlotIdx
	2

	841
	$atmAtmSpvcVccVpiB
	2

	842
	$mplsL3VpnifConfIdx
	2

	843
	$phIeElementAddr
	2

	844
	$ssngTagInt
	2

	845
	$cpqFcTapeLibraryFWRev
	2

	846
	$atmAtmSpvcVccifB
	2

	847
	$fcConnUnitGlobalId
	2

	848
	$ssg5000TrapBGPAlarmId
	2

	849
	$ciscoEnvMonVoltageStatDescr
	2

	850
	$sidaSensorAddr
	2

	851
	$vtpVlannm
	2

	852
	$ceAlarmHistEntPhysicalIdx
	2

	853
	$fddimibPORTIdx
	2

	854
	$vtpVlanRingno
	2

	855
	$jnxVpnifIdx
	2

	856
	$nodeUserFrom
	2

	857
	$ccmHistoryEventConfigDest
	2

	858
	$ciuUpgradeOpCommand
	2

	859
	$portnm
	2

	860
	$ceAlarmHistAlarmType
	2

	861
	$lportTrkStat
	2

	862
	$Severity
	2

	863
	$ssg5000TrapTELSPAlarmId
	2

	864
	$mplsLdpSessionSt
	2

	865
	$sidaAlertActionsTaken
	2

	866
	$cpqFcTapeLibraryCntlrIdx
	2

	867
	$Facility
	2

	868
	$cesProbenm
	2

	869
	$chassisTempAlarm
	2

	870
	$nHostLastChange
	2

	871
	$tmpVal1
	2

	872
	$ssngLinkLoopbackMode
	2

	873
	$cRFStatLastSwactReasonCode
	2

	874
	$cldeRealProtocol
	2

	875
	$cpqDaTapeLibraryStat
	2

	876
	$ciscoEnvMonVoltageStatValue
	2

	877
	$ModIdx
	2

	878
	$cpqFcaLogDrvIdx
	2

	879
	$cRFStatUnitId
	2

	880
	$chanId
	2

	881
	$imaGrpChannelStat
	2

	882
	$entPhysicalContainedIn
	2

	883
	$nSvcStIDlook
	2

	884
	$ssg5000TrapSerialPortAlarmId
	2

	885
	$ssngLSID
	2

	886
	$mplsL3VpnVrfConfHighRteThresh
	2

	887
	$cumulativeDownTime
	2

	888
	$cpimLastErrorOriginType
	2

	889
	$ssg5000TrapDS1ChannelId
	2

	890
	$cmdbIpStrategic
	2

	891
	$cdromId
	2

	892
	$eventSequenceno
	2

	893
	$ssngtraceno
	2

	894
	$sidaAlertScanType
	2

	895
	$vbrAtmSpvcVpiB
	2

	896
	$fracctASAddrPri
	2

	897
	$jnxLdpRtrid
	2

	898
	$snOspfExtLsdbLimit
	2

	899
	$cpqDaAccelBattery
	2

	900
	$oaDevTrapsPortsifIdx
	2

	901
	$fcsRejReasonCode
	2

	902
	$cRFStatPeerUnitSt
	2

	903
	$ospfExtLsdbLimit
	2

	904
	$isHosting
	2

	905
	$ssngRouterConfigByIpAddr
	2

	906
	$cpqDaAccelTotalMem
	2

	907
	$slbVSrvSt
	2

	908
	$atmAtmSpvcVccVciB
	2

	909
	$ipAddrstr
	2

	910
	$mplsLdpSessionStatsTypeErrors
	2

	911
	$clmLicenseExpiryDate
	2

	912
	$additionalInfonms
	2

	913
	$atmacctASAddrSec
	2

	914
	$sigPathPort
	2

	915
	$snAgentBrdIdx
	2

	916
	$bigipNotifyObjPort
	2

	917
	$onsVsvrIpAddr
	2

	918
	$cktFailReason
	2

	919
	$lportAuthFailReason
	2

	920
	$ssngSrcFile
	2

	921
	$ssngPeernm2
	2

	922
	$jnxCmRescueChgSrc
	2

	923
	$cRFStatUnitSt
	2

	924
	$nbsDevSessionType
	2

	925
	$fracctASControl
	2

	926
	$nSvcgrpnm
	2

	927
	$vbrAtmSpvcVciB
	2

	928
	$cpqFcaHostCntlrModel
	2

	929
	$cbgpPeerAddrFamilySafiRaw
	2

	930
	$ssg5000TrapLFIBELSPAlarmId
	2

	931
	$trending
	2

	932
	$cirAtmSpvcVccVciB
	2

	933
	$description
	2

	934
	$ssngVpnnm
	2

	935
	$cpimLastErrorgrpType
	2

	936
	$nHostOutput
	2

	937
	$ipPermitDeniedAccess
	2

	938
	$nSvcOutput
	2

	939
	$ObjectIdPart1
	2

	940
	$sidaAlertDstMacAddr
	2

	941
	$nSvcLastChange
	2

	942
	$ssg5000TrapAddrPoolAlarmId
	2

	943
	$probableCause
	2

	944
	$tslineSesType
	2

	945
	$frCircuitSt
	2

	946
	$spDNSnm
	2

	947
	$dot1xAuthPaeSt
	2

	948
	$cldexVirtProtocol
	2

	949
	$mcmSysAsciiTimeOfDay
	2

	950
	$nbsTrapHostIpAddr
	2

	951
	$sidaAlertEventPriority
	2

	952
	$tsLineUser
	2

	953
	$slbnm
	2

	954
	$oaDevTrapsPortsSlotno
	2

	955
	$generic
	2

	956
	$customer
	2

	957
	$ssngBayno
	2

	958
	$nSvcDesc
	2

	959
	$recommendedAction
	2

	960
	$zoneSrvRejReasonCode
	2

	961
	$cpqDaSpareBusno
	2

	962
	$mplsLdpSessionStatsErr
	2

	963
	$cpqFcaLogDrvStat
	2

	964
	$nbsDevPSIdx
	2

	965
	$cktFailNode
	2

	966
	$oc3APSProtectionLineSignalStat
	2

	967
	$monitoredIp
	2

	968
	$ssngNetID
	2

	969
	$mplsL3VpnifConfRowStat
	2

	970
	$cpimLastErrorOrigin
	2

	971
	$ssg5000TrapMemChgAlarmId
	2

	972
	$sidaSensorAddrType
	2

	973
	$jnxVpnifVpnnm
	2

	974
	$wmanifSsDynSrvType
	2

	975
	$slbVirtSrvSt
	2

	976
	$atmImaIntfStat
	2

	977
	$pimIntifIdx
	2

	978
	$cpqScsiCntlrStat
	2

	979
	$spDNSExpected
	2

	980
	$nodePrFilenm
	2

	981
	$correlatedIndications
	2

	982
	$cpqDaPhyDrvBay
	2

	983
	$spHardwareFailureDescription
	2

	984
	$jnxOperatingTemp
	2

	985
	$eventFrequency
	2

	986
	$cpwVcOperStnd
	2

	987
	$cdromIdOctets
	2

	988
	$atmacctASControl
	2

	989
	$spUnit
	2

	990
	$mplsL3VpnVrfOperStat
	2

	991
	$cpqFcaAccelStat
	2

	992
	$cirAtmSpvcVccVpiB
	2

	993
	$svcAtmConfigifIdx
	2

	994
	$noFields
	2

	995
	$cpqFcaHostCntlrWorldWidenm
	2

	996
	$trapPortno
	2

	997
	$diff
	2

	998
	$vlanTrunkPortManagementDomain
	2

	999
	$nbsDevFANIdx
	2

	1000
	$cpqFcTapeLibrarySerialno
	2

	1001
	$ceAlarmHistTimeStamp
	2

	1002
	$cpqDaCntlrModel
	2

	1003
	$jnxCmCfgChgEventSrc
	2

	1004
	$cpqFcaPhyDrvStat
	2

	1005
	$ssngThreshLvl
	2

	1006
	$otherAlertType
	2

	1007
	$lportMultilinkProtocolFailReason
	2

	1008
	$ciscoEnvMonVoltageSt
	2

	1009
	$pportDS0FarendDS0InLpbk
	2

	1010
	$MemPort
	2

	1011
	$oc3APSSelectorSt
	2

	1012
	$ciscoEnvMonFanSt
	2

	1013
	$nodeConsoleIdx
	2

	1014
	$eventOrigin
	2

	1015
	$cffFcFeElementnm
	2

	1016
	$fracctASAddrSec
	2

	1017
	$mplsVpnIntConfIdx
	2

	1018
	$mplsLdpSesDiscontinuityTime
	2

	1019
	$ciscoEnvMonTempStatDesc
	2

	1020
	$ObjectIdPart2
	2

	1021
	$oaLdCardPortsPortno
	2

	1022
	$slbVSrvPolicyMap
	2

	1023
	$cbgpPeerLastErrorTxt
	2

	1024
	$jnxLdpLspDownReason
	2

	1025
	$additionalInfoValues
	2

	1026
	$atmacctControl
	2

	1027
	$ssngVPI
	2

	1028
	$chassisMinorAlarm
	2

	1029
	$notify
	2

	1030
	$policyConfigSlotModemWarning
	2

	1031
	$oaSfpInfoPortIdx
	2

	1032
	$pdosHeartbeatSrc
	2

	1033
	$sidaAlertSrcPort
	2

	1034
	$managementDomainLocalMode
	2

	1035
	$entPhysicalParentRelPos
	2

	1036
	$frAtmSpvcVccifB
	2

	1037
	$nHostStTypelook
	2

	1038
	$pimIntStat
	2

	1039
	$cumulativeUpTime
	2

	1040
	$ospfNbrRtrId
	2

	1041
	$oc3APSReasonCode
	2

	1042
	$fcTrunkifOperStat
	2

	1043
	$cardType
	2

	1044
	$cbgpPeerAddrFamilyAfiRaw
	2

	1045
	$sidaSensorVersion
	2

	1046
	$nbsDevSNMPAccessMode
	2

	1047
	$indicationIdentifier
	2

	1048
	$managementDomainVerInUse
	2

	1049
	$ssngCurrPrefixCnt
	2

	1050
	$nodeSwFilenm
	2

	1051
	$ssngVCID
	2

	1052
	$specific
	2

	1053
	$ssngMsgLen
	2

	1054
	$cktOperStat
	2

	1055
	$ssngProcessno2
	2

	1056
	$nSvcLastCheck
	2

	1057
	$zoneMemFormat
	2

	1058
	$cpqDaTapeDrvStat
	2

	1059
	$ciscoEnvMonTempStatVal
	2

	1060
	$spManagedObjectFamily
	2

	1061
	$ssg5000TrapIKETunAlarmId
	2

	1062
	$cpqDaSparePhyDrvIdx
	2

	1063
	$ccmHistoryEventCommandSrc
	2

	1064
	$cpqFcaHostCntlrSlot
	2

	1065
	$spInt
	2

	1066
	$chanPortId
	2

	1067
	$sidaAlertSrcMacAddr
	2

	1068
	$frCircuitifIdx
	2

	1069
	$Mnemonic
	2

	1070
	$cfsFeatureOpLastAction
	2

	1071
	$ssg5000TrapVRFAlarmId
	2

	1072
	$cktNdcSrcDlci
	2

	1073
	$cbgpPeerPrevSt
	2

	1074
	$vbrAtmSpvcifB
	2

	1075
	$sigPathVPI
	2

	1076
	$alertingManagedElement
	2

	1077
	$lportIlmiOperStat
	1

	1078
	$cfsMergeFailReasonDescription
	1

	1079
	$swFwLastEventVal
	1

	1080
	$Probenm
	1

	1081
	$fireWall
	1

	1082
	$octet4
	1

	1083
	$chassisOverTempAlarmCode
	1

	1084
	$time_str1
	1

	1085
	$reason
	1

	1086
	$sidaAlertDstAddrType
	1

	1087
	$jnxLdpSesDownReason
	1

	1088
	$svcPrefixPrefix
	1

	1089
	$t1WANStat
	1

	1090
	$ciuUpgradeOpTimeCompleted
	1

	1091
	$firewallSrcPort
	1

	1092
	$swSensorIdx
	1

	1093
	$ssngResponseKey2
	1

	1094
	$nSvcAckComment
	1

	1095
	$fruHistoryFactoryPartno
	1

	1096
	$jnxRedundancyL1Idx
	1

	1097
	$cpqFcaLogDrvSize
	1

	1098
	$ssg5000TrapIntno
	1

	1099
	$snOspfNbrIpAddr
	1

	1100
	$urlPollerTableKey
	1

	1101
	$swSensorType
	1

	1102
	$csyClockDateAndTime
	1

	1103
	$fspfifNbrDomainId
	1

	1104
	$slbVSrvIpAddr
	1

	1105
	$cpqFcaHostCntlrHwLocation
	1

	1106
	$spFingerprintmsg
	1

	1107
	$jnxCmRescueChgSt
	1

	1108
	$jnxCmRescueChgUser
	1

	1109
	$cldexVirtProtocol_Raw
	1

	1110
	$ssngExceptionno
	1

	1111
	$assertedSeverity
	1

	1112
	$fwEvent
	1

	1113
	$spScriptPort
	1

	1114
	$cpqDaLogDrvIdx
	1

	1115
	$tcpConnRemAddr
	1

	1116
	$cpimInvalidJoinPruneMsgsRcvd
	1

	1117
	$cpqFcaHostCntlrSerialno
	1

	1118
	$cRFStatPeerUnitId
	1

	1119
	$cHsrpGrpStandbySt
	1

	1120
	$pportInt
	1

	1121
	$ssngPathnm
	1

	1122
	$slbSaspAgentPort
	1

	1123
	$fracctLportSvcOrigControl
	1

	1124
	$slbRealSrvFarmnm
	1

	1125
	$ringStationMacAddr
	1

	1126
	$ssngGatekeepernm
	1

	1127
	$loss
	1

	1128
	$mplsLdpPeerPathVectorLimit
	1

	1129
	$3400PortKey
	1

	1130
	$vsanOperSt
	1

	1131
	$cpqFcaLogDrvBoxIdx
	1

	1132
	$proposedRepairActions
	1

	1133
	$dsx3LineStat
	1

	1134
	$ASPEventId
	1

	1135
	$auditNenotifId
	1

	1136
	$spScriptStart
	1

	1137
	$lmiDlciOperStat
	1

	1138
	$tcaObjectnm
	1

	1139
	$ssngEncapsulationLength
	1

	1140
	$ssngTEIID
	1

	1141
	$EventID
	1

	1142
	$adminObjectType
	1

	1143
	$ssg5000TrapSrvAlarmSev
	1

	1144
	$extLDAPSrv
	1

	1145
	$fracctSwASCommsFailures
	1

	1146
	$swID
	1

	1147
	$OID31
	1

	1148
	$ipv6ifOperStat
	1

	1149
	$chassisFanStat
	1

	1150
	$adminCauseShort
	1

	1151
	$wmanifBsSsRegisterStat
	1

	1152
	$jnxCmCfgChgEventDate
	1

	1153
	$vrrpOperVrId
	1

	1154
	$ef6000PortIdx
	1

	1155
	$slbSaspAgentSt
	1

	1156
	$Thresh
	1

	1157
	$auditNeTime
	1

	1158
	$cardOperType
	1

	1159
	$wmanifBsSsRssiStat
	1

	1160
	$lportBilling
	1

	1161
	$ssg5000SysFanStat
	1

	1162
	$vtpVlanSt
	1

	1163
	$cktLeafAtmVPI
	1

	1164
	$MemUsage
	1

	1165
	$connUnitEventObject
	1

	1166
	$tmp2
	1

	1167
	$cc6kxbarSwBusswitchingStat
	1

	1168
	$cktLeafAtmVCI
	1

	1169
	$cfsPeersDiscResult
	1

	1170
	$jnxCmCfgChgEventTime
	1

	1171
	$cldeRealSt
	1

	1172
	$SrvAffecting
	1

	1173
	$cldFailoverEnabled
	1

	1174
	$lportCongestRate
	1

	1175
	$oamActDeactVciB
	1

	1176
	$cfsPeersDiscFailureReason
	1

	1177
	$ssngIpAdddress
	1

	1178
	$clmLicenseGracePeriod
	1

	1179
	$tcaAssertedSeverity
	1

	1180
	$neTime
	1

	1181
	$lportBundleId
	1

	1182
	$fcConnUnitSt
	1

	1183
	$tasTstLineReasonCode
	1

	1184
	$emsTime
	1

	1185
	$imaGrpChannelSymmetry
	1

	1186
	$ssg5000TrapIspnm
	1

	1187
	$ciscoFlashMiscOpSerialno
	1

	1188
	$cpqDaCntlrIdx
	1

	1189
	$ssgnno
	1

	1190
	$rhTrapDynFilterActionlook
	1

	1191
	$slbVSrvIpAddrType
	1

	1192
	$ssngLinkID2
	1

	1193
	$ipAddrPool
	1

	1194
	$cerent454ThreshSetValue
	1

	1195
	$cpimInvalidRegisterMsgsRcvd
	1

	1196
	$ssg5000TrapETHPortAlarmId
	1

	1197
	$httpResult
	1

	1198
	$OID35
	1

	1199
	$securityEmsnotifId
	1

	1200
	$zoneMergeFailureVSANno
	1

	1201
	$swFwThreshIdx
	1

	1202
	$apsFailureReasonCode
	1

	1203
	$spScriptHost
	1

	1204
	$spReportnm
	1

	1205
	$ThreshTimePeriod
	1

	1206
	$pportdsx3LoopStat
	1

	1207
	$loc
	1

	1208
	$fiveVoltsPositive
	1

	1209
	$nodePsDcPWRBStat
	1

	1210
	$snOspfVirtNbrSt
	1

	1211
	$pingStatReasonCode
	1

	1212
	$sngModnm
	1

	1213
	$firewallDestAddr
	1

	1214
	$securityEmsTime
	1

	1215
	$cpqDaTapeLibraryDoorStat
	1

	1216
	$dnsSrv
	1

	1217
	$cldRealPort
	1

	1218
	$trapUsernm
	1

	1219
	$nodePsAStat
	1

	1220
	$cerent454ThreshCurrentValue
	1

	1221
	$fspfifPrevNbrSt
	1

	1222
	$OID24
	1

	1223
	$cldeRealPort
	1

	1224
	$spBGPTrapEvent
	1

	1225
	$pportATMTcaId
	1

	1226
	$spTMSTimeout
	1

	1227
	$failedLogin
	1

	1228
	$nodeDiagNonFatalErrMajor
	1

	1229
	$nodeOperatingStat
	1

	1230
	$nodeFileTransferRequest
	1

	1231
	$Cnt
	1

	1232
	$onsSlot
	1

	1233
	$match2
	1

	1234
	$wmanifBsSsRssiStatInfo
	1

	1235
	$cpqFcaLogDrvOsnm
	1

	1236
	$fcsRejReasonCodeExplanation
	1

	1237
	$ssg5000TrapCT3PortAlarmId
	1

	1238
	$boardIdx
	1

	1239
	$cpqDaAccelserialno
	1

	1240
	$adminEmsnm
	1

	1241
	$cldexVirtSt
	1

	1242
	$ccmHistoryEventIdx
	1

	1243
	$trapSequenceno
	1

	1244
	$fcConnUnitEventDescr
	1

	1245
	$activeStratum
	1

	1246
	$cktLeafSrcifIdx
	1

	1247
	$nodeExternalClockBOpSt
	1

	1248
	$OID28
	1

	1249
	$cpqFcTapeCntlrStat
	1

	1250
	$onsCpu
	1

	1251
	$cmdbIpComponent
	1

	1252
	$mplsLdpEntityInitSessionThresh
	1

	1253
	$rulenm
	1

	1254
	$rttMonCtrlOperLostOccurred
	1

	1255
	$securityObjectType
	1

	1256
	$jnxRedundancyConfig
	1

	1257
	$entPhysicalModelnm
	1

	1258
	$ThreshAttributeValue
	1

	1259
	$swDiagResult
	1

	1260
	$fcnmSrvRejReasCodeExp
	1

	1261
	$Alertgrp
	1

	1262
	$ssngTagInt2
	1

	1263
	$fruStatlook
	1

	1264
	$radiusAcctSrv
	1

	1265
	$tmp5
	1

	1266
	$spHijackLocal
	1

	1267
	$imaGrpChannelFailureStat
	1

	1268
	$fcifElpNbrPortnm
	1

	1269
	$trapSessionId
	1

	1270
	$loadBalancingSrv
	1

	1271
	$atmacctSwASCommsFailures
	1

	1272
	$card
	1

	1273
	$ciscoFlashCopySerialno
	1

	1274
	$ssngDLCIStatnm
	1

	1275
	$default_ExpireTimie
	1

	1276
	$emsProbableCause
	1

	1277
	$internalErrorReason
	1

	1278
	$dhcpSrv
	1

	1279
	$cpqFcaSpareStat
	1

	1280
	$ospfNbrSt
	1

	1281
	$rttMonCtrlOperVerifyErrOccur
	1

	1282
	$pportAPSpairedPportId
	1

	1283
	$fltsrvSeverity
	1

	1284
	$additionalText
	1

	1285
	$octet1
	1

	1286
	$cfsMergeFailFeaturenm
	1

	1287
	$bandwidth
	1

	1288
	$cerent454ThreshPeriod
	1

	1289
	$jnxRedundancyswitchoverTime
	1

	1290
	$rhTrapAFDstPort
	1

	1291
	$nodePsDcPWRAStat
	1

	1292
	$cpqFcaHostCntlrIdx
	1

	1293
	$monitornm
	1

	1294
	$stpxVlanIdx
	1

	1295
	$nodeDiagNonFatalStr
	1

	1296
	$cpqFcaSpareBusno
	1

	1297
	$stime
	1

	1298
	$ospfVirtNbrSt
	1

	1299
	$ciscoIpMRouteHeartBeatInterval
	1

	1300
	$vrrpTrapAuthErrorType
	1

	1301
	$loctcpConnInBytes
	1

	1302
	$tz_trap_time
	1

	1303
	$SubFacility
	1

	1304
	$ssngBufferCnt
	1

	1305
	$cpqFcaAccelErrCode
	1

	1306
	$versionConfigReasonCode
	1

	1307
	$sidaAlertScanDuration
	1

	1308
	$nodeBillingAPAddr
	1

	1309
	$dsx3LineStatLastChange
	1

	1310
	$cldeVirtProtocol_Raw
	1

	1311
	$nbsTrapLoginnm
	1

	1312
	$tcaObjectType
	1

	1313
	$cpqSsChassisIdx
	1

	1314
	$tcaParameternm
	1

	1315
	$OS_Summary
	1

	1316
	$nenm
	1

	1317
	$cfsMergeFailScopeType
	1

	1318
	$slbVirtIpAddr
	1

	1319
	$wmanifBsSsStatInfo
	1

	1320
	$sonetSectionCurrentStat
	1

	1321
	$atmacctUsageRecCrFailures
	1

	1322
	$stpxLoopInconsistencyIdx
	1

	1323
	$zoneSrvRejReasonCodeExp
	1

	1324
	$pportAPSprotectionLineSt
	1

	1325
	$varBindLength
	1

	1326
	$extremeSlotModSt
	1

	1327
	$connUnitEventDescr
	1

	1328
	$chanLinkDownReason
	1

	1329
	$licensingStat
	1

	1330
	$cpqDaPhyDrvLocationstr
	1

	1331
	$ciscoFlashCopyStat
	1

	1332
	$ssngNodeID
	1

	1333
	$spBlackholeTimeout
	1

	1334
	$objectnm
	1

	1335
	$ssngSt2
	1

	1336
	$cktCustomerID
	1

	1337
	$propertynms
	1

	1338
	$cefcFRUPWROperStat
	1

	1339
	$slbSaspAgentIpAddr
	1

	1340
	$NoQuietOutput
	1

	1341
	$cpqDaAccelCntlrIdx
	1

	1342
	$firewallRuleAction
	1

	1343
	$cerent454AlarmAdditionalInfo
	1

	1344
	$reasonText
	1

	1345
	$sidaAlertTCPScanCnt
	1

	1346
	$auditNeNodeId
	1

	1347
	$spThresh
	1

	1348
	$securityNeNodeId
	1

	1349
	$chands1NearEndLoopConfig
	1

	1350
	$sysConfigChangeTime
	1

	1351
	$ssngMetricNo2
	1

	1352
	$searchstr
	1

	1353
	$chassisIntrusion
	1

	1354
	$nodeFileTransferStat
	1

	1355
	$auditParamList
	1

	1356
	$swTrackChangesInfo
	1

	1357
	$SrvActionCodeHex
	1

	1358
	$cbgpPeerPrefixclrThresh
	1

	1359
	$loctcpConnElapsed
	1

	1360
	$sidaAlertDstPortList
	1

	1361
	$tmp1
	1

	1362
	$moverMailboxSt
	1

	1363
	$nodeBulkStatsCollectorAddr
	1

	1364
	$ssngRouterConfigFrom
	1

	1365
	$oamTestFailureReasonCode
	1

	1366
	$spBGPTrapOldAttributes
	1

	1367
	$OID37
	1

	1368
	$firewallPolicyType
	1

	1369
	$OPTION_StBasedCorr
	1

	1370
	$pvcnm
	1

	1371
	$OID23
	1

	1372
	$mplsLdpEntityPathVectorLimit
	1

	1373
	$nodeDiagNonFatalSrc
	1

	1374
	$ospfNbrIpAddr
	1

	1375
	$securityEmsnm
	1

	1376
	$fltsrvAlarmText
	1

	1377
	$fcConnUnitEventObject
	1

	1378
	$slbSaspAgentIpAddrType
	1

	1379
	$securityNenm
	1

	1380
	$cpqDaCntlrBoardStat
	1

	1381
	$ssg5000TrapSystemAlarmId
	1

	1382
	$jnxRedundancyL3Idx
	1

	1383
	$cpqFcaPhyDrvSerialno
	1

	1384
	$twoDotFiveVA
	1

	1385
	$firewallRuleType
	1

	1386
	$entSensorThreshIdx
	1

	1387
	$cktLeafFailReason
	1

	1388
	$adminNenm
	1

	1389
	$codnm
	1

	1390
	$pimRPSetAddr
	1

	1391
	$spBlackholeCommunity
	1

	1392
	$OID30
	1

	1393
	$spThirdPartyZone
	1

	1394
	$ssg5000TrapFrameRelayAlarmId
	1

	1395
	$securityClientHostnm
	1

	1396
	$nodeDiagNonFatalErrMinor
	1

	1397
	$spBGPInstability
	1

	1398
	$ssngISDNnm
	1

	1399
	$cldexVirtRule
	1

	1400
	$srcIpAddr
	1

	1401
	$ssngCdbno
	1

	1402
	$swEventRepeatCnt
	1

	1403
	$twelveVoltsMinus
	1

	1404
	$ssg5000TrapVPIno
	1

	1405
	$auditOperationnm
	1

	1406
	$cefcFRUPWRAdminStat
	1

	1407
	$bsnEapAccessViolationMacAddr
	1

	1408
	$spThirdPartyAddr
	1

	1409
	$pportCbrCurrentClockMode
	1

	1410
	$cfcFeatureCtrlOpStat
	1

	1411
	$firewallProtocolID
	1

	1412
	$cefcPhysicalStat
	1

	1413
	$hardDisk1Stat
	1

	1414
	$cpqFcaPhyDrvFWRev
	1

	1415
	$cktLeafOperStat
	1

	1416
	$dualScpSlot
	1

	1417
	$lportLinkStat
	1

	1418
	$lportSevereCongestStat
	1

	1419
	$cldexVirtBindID
	1

	1420
	$clmNoOfMissingUsageLicenses
	1

	1421
	$trapstr
	1

	1422
	$swFwLastEventTime
	1

	1423
	$spUsage
	1

	1424
	$spTMSCommunity
	1

	1425
	$sngSlotNo
	1

	1426
	$prevGlobalStat
	1

	1427
	$t3WANStat
	1

	1428
	$upgradeSwCopyStat
	1

	1429
	$zoneMemIdx
	1

	1430
	$cldeRealBindID
	1

	1431
	$ssngEnvironmentnm
	1

	1432
	$swSensorValue
	1

	1433
	$dsx1LineStatLastChange
	1

	1434
	$nodeExternalClockAOpSt
	1

	1435
	$objectType
	1

	1436
	$spBlackholePrefix
	1

	1437
	$stpxRootInconsistencySt
	1

	1438
	$fcConnUnitPortSt
	1

	1439
	$rhTrapAFSrcIP
	1

	1440
	$PwrSupReasonCode
	1

	1441
	$flag
	1

	1442
	$cpqDaPhyDrvThreshPassed
	1

	1443
	$adminObjectnm
	1

	1444
	$pportDS0LoopUpStat
	1

	1445
	$cldeRealProtocol_Raw
	1

	1446
	$remoteRebootReasonCode
	1

	1447
	$onsDesc
	1

	1448
	$jnxLdpSesUpif
	1

	1449
	$arpStat
	1

	1450
	$OID38
	1

	1451
	$onsSeverity
	1

	1452
	$tcaEmsnotifId
	1

	1453
	$fltsrvComponentID
	1

	1454
	$frLmiOperStat
	1

	1455
	$ciscoFlashPartingSerialno
	1

	1456
	$ssg5000TrapCT3DS1AlarmId
	1

	1457
	$swFCPortOpStat
	1

	1458
	$cktSvcCause
	1

	1459
	$nbsTrapRCMredundancySt
	1

	1460
	$identifierLength
	1

	1461
	$ipv6ifDescr
	1

	1462
	$cldVirtIpAddr
	1

	1463
	$stpxRootInconsistencyPortIdx
	1

	1464
	$cfsFeatureOpLastActionResult
	1

	1465
	$lastKey
	1

	1466
	$ipTypeReasonCode
	1

	1467
	$swFwLastSt
	1

	1468
	$auditEmsTime
	1

	1469
	$ThreshType
	1

	1470
	$ssngTag
	1

	1471
	$fcConnUnitSensorStat
	1

	1472
	$ospfVirtNbrArea
	1

	1473
	$spingIp
	1

	1474
	$ssngCpuno
	1

	1475
	$wmanifSsUnknownTlv
	1

	1476
	$normalTemperature
	1

	1477
	$jnxRedundancyContentsIdx
	1

	1478
	$OID34
	1

	1479
	$fspfifNbrSt
	1

	1480
	$spHijackRoute
	1

	1481
	$fcConnUnitStat
	1

	1482
	$spBGPTrapPrefix
	1

	1483
	$ssngProcessDescription
	1

	1484
	$slbSaspAgentIpAddrTypeRaw
	1

	1485
	$firewallDestPort
	1

	1486
	$cpqFcaLogDrvFaultTol
	1

	1487
	$ssngMaxBufferCnt
	1

	1488
	$cerent454ThreshLocation
	1

	1489
	$cldRealSt
	1

	1490
	$octet2
	1

	1491
	$swSensorInfo
	1

	1492
	$OID40
	1

	1493
	$errorCode
	1

	1494
	$spFlowspecCommunity
	1

	1495
	$swEventLvl
	1

	1496
	$fruHistoryEventlook
	1

	1497
	$fcConnUnitPortStat
	1

	1498
	$ssngGatewaynm
	1

	1499
	$stpxInconsistentSt
	1

	1500
	$swFwLastEvent
	1

	1501
	$slbRealIpAddr
	1

	1502
	$ssngChipnm
	1

	1503
	$fracctUsageRecCrFailures
	1

	1504
	$cldeVirtBindID
	1

	1505
	$ssngRouterID
	1

	1506
	$cefcModStatLastChgTime
	1

	1507
	$lportISDNCallRejCause
	1

	1508
	$ipIntfStat
	1

	1509
	$ssg5000TrapDLCIno
	1

	1510
	$cefcFanTrayOperStat
	1

	1511
	$tcaThreshType
	1

	1512
	$cpqFcaSpareBay
	1

	1513
	$lastHBTime
	1

	1514
	$cmdbIpSiteId
	1

	1515
	$auditObjectType
	1

	1516
	$atmIntfPvcFailures
	1

	1517
	$ssngTagSize
	1

	1518
	$emsnotifId
	1

	1519
	$dot1xPaePortno
	1

	1520
	$cfsFeatureOpnm_Raw
	1

	1521
	$tcaLocation
	1

	1522
	$adminNenotifId
	1

	1523
	$cktNdcInDiscardClp0CellThresh
	1

	1524
	$pportAPSconfigStat
	1

	1525
	$rttMonCtrlOperTimeoutOccurred
	1

	1526
	$cpqDaLogDrvCntlrIdx
	1

	1527
	$fcifElpRejectReasonCode
	1

	1528
	$snmpSrv
	1

	1529
	$sidaAlertDstAddr
	1

	1530
	$cpqScsiLogDrvStat
	1

	1531
	$tcaEmsnm
	1

	1532
	$auditEmsnotifId
	1

	1533
	$fcnmSrvPortIdentifier
	1

	1534
	$spScriptCommand
	1

	1535
	$cpLastEventlook
	1

	1536
	$es1000CompStat
	1

	1537
	$nodeFanStat
	1

	1538
	$cldexVirtPort
	1

	1539
	$ssngSignature
	1

	1540
	$fracctLportSvcTermControl
	1

	1541
	$ssngMaxPathAllowed
	1

	1542
	$snOspfVirtNbrRtrId
	1

	1543
	$nodePortClockAOpSt
	1

	1544
	$cardOperStat
	1

	1545
	$fcsVsanDiscnm
	1

	1546
	$ssg5000TrapSrvModAlarm
	1

	1547
	$switchAlarmStat
	1

	1548
	$OID22
	1

	1549
	$spFlowspecTimeout
	1

	1550
	$apSvcSt
	1

	1551
	$cldexVirtRule_Octetstr
	1

	1552
	$pportAdminInt
	1

	1553
	$OID27
	1

	1554
	$securityAcCntnm
	1

	1555
	$jnxRedundancyDescr
	1

	1556
	$spReportURL
	1

	1557
	$backupSrv
	1

	1558
	$svcNodePrefixPrefix
	1

	1559
	$sonetLineCurrentStat
	1

	1560
	$zoneMergeSuccessVSANno
	1

	1561
	$fipsStat
	1

	1562
	$slbPort
	1

	1563
	$OID33
	1

	1564
	$tcaGranularity
	1

	1565
	$jnxRedundancyL2Idx
	1

	1566
	$cmdbIpSitenm
	1

	1567
	$default_ExpirtTime
	1

	1568
	$fruHistoryFactorySerialno
	1

	1569
	$sysConfigChangeInfo
	1

	1570
	$neNodeId
	1

	1571
	$cldFailoverUnitStat
	1

	1572
	$ThreshAttributeType
	1

	1573
	$vlanTrunkPortifIdx
	1

	1574
	$connUnitStat
	1

	1575
	$tmp4
	1

	1576
	$atmacctLportifIdx
	1

	1577
	$ssg5000TrapCardAlarmId
	1

	1578
	$new_time
	1

	1579
	$snOspfifStatSt
	1

	1580
	$Header
	1

	1581
	$adminEmsTime
	1

	1582
	$tz_hours
	1

	1583
	$ssg5000TrapVCIno
	1

	1584
	$lportVAvailbw
	1

	1585
	$ssngScriptnm
	1

	1586
	$securityNeTime
	1

	1587
	$cldeRealIpAddr
	1

	1588
	$St
	1

	1589
	$zoneMemTypeIdx
	1

	1590
	$cardDiagNonFatalErrMajor
	1

	1591
	$ssngChipno
	1

	1592
	$lportBuFailReason
	1

	1593
	$spIntUsage
	1

	1594
	$stpxRootInconsistencyIdx
	1

	1595
	$securityNenotifId
	1

	1596
	$errorModifier
	1

	1597
	$stpxLoopInconsistencyPortIdx
	1

	1598
	$trap_time
	1

	1599
	$ssngNeighborId
	1

	1600
	$oamActDeactVpiB
	1

	1601
	$oamActDeactifB
	1

	1602
	$cktNdcInDiscardClp01Cells
	1

	1603
	$threeVoltsPositive
	1

	1604
	$neCorrelationId
	1

	1605
	$rhTrapAFProtocol
	1

	1606
	$snSwViolatorMacAddr
	1

	1607
	$ssg5000SysTempStat
	1

	1608
	$jnxRedundancyswitchoverCnt
	1

	1609
	$lportLossOfStructurePointer
	1

	1610
	$swEventDescr
	1

	1611
	$firmwareDownloadReasonCode
	1

	1612
	$cardTransmitClockStat
	1

	1613
	$ospfNbrAddrLessIdx
	1

	1614
	$fanOneStat
	1

	1615
	$nodeBilling
	1

	1616
	$rhTrapAFDstIP
	1

	1617
	$svcAtmConfigQ93bLastCauseTx
	1

	1618
	$tcpConnLocalAddr
	1

	1619
	$tcpConnRemPort
	1

	1620
	$cldVirtPort
	1

	1621
	$cardATMTcaId
	1

	1622
	$vrrpTrapPacketSrc
	1

	1623
	$zoneMemParentIdx
	1

	1624
	$cfsFeatureOpLastScopeType
	1

	1625
	$intLDAPSrv
	1

	1626
	$adminEmsnotifId
	1

	1627
	$cardSystemSecondaryClockStat
	1

	1628
	$cpqFcaPhyDrvModel
	1

	1629
	$ospfifSt
	1

	1630
	$ciscoFlashMiscOpStat
	1

	1631
	$firewallRuleno
	1

	1632
	$cldFailoverCableStat
	1

	1633
	$pportSetClkBkup
	1

	1634
	$twoDotFiveVB
	1

	1635
	$stpxLoopInconsistencySt
	1

	1636
	$statRtStat
	1

	1637
	$entSensorThreshValue
	1

	1638
	$zoneMemID
	1

	1639
	$spTMSPrefix
	1

	1640
	$slbVSrvProtocol
	1

	1641
	$cardDiagNonFatalTime
	1

	1642
	$ssg5000TrapCT3DS2AlarmId
	1

	1643
	$emsCorrelationId
	1

	1644
	$slbSaspEnabled
	1

	1645
	$SrvActionCode
	1

	1646
	$lanCardStat
	1

	1647
	$cktPrivateNet
	1

	1648
	$nHostAckComment
	1

	1649
	$dvcCktGrpDialedE164Addr
	1

	1650
	$cardProtectionStat
	1

	1651
	$ThreshLvl
	1

	1652
	$netBuffers
	1

	1653
	$cldeVirtSt
	1

	1654
	$tcaCurrentValue
	1

	1655
	$lportRecOverflow
	1

	1656
	$swEventTimeInfo
	1

	1657
	$mplsVpnVrfSecIllegalLabelErrs
	1

	1658
	$fruHistoryClasslook
	1

	1659
	$nbsTrapWrongAccessDateTime
	1

	1660
	$slbVirtProtocol
	1

	1661
	$cfcFeatureCtrlIdx
	1

	1662
	$spDNSObservedMax
	1

	1663
	$spBGPTrapnm
	1

	1664
	$adminNeNodeId
	1

	1665
	$nodeRefclockActiveSrc
	1

	1666
	$spIntSpeed
	1

	1667
	$propertyValues
	1

	1668
	$cfsMergeFailScopeVal
	1

	1669
	$ospfVirtNbrRtrId
	1

	1670
	$ospfVirtifSt
	1

	1671
	$svcAddrAddr
	1

	1672
	$spBlackholeNexthop
	1

	1673
	$swFwLabel
	1

	1674
	$tz_str
	1

	1675
	$routingStat
	1

	1676
	$fracctOperSt
	1

	1677
	$cipSecTunLifeSize
	1

	1678
	$apSvcTrapEventText
	1

	1679
	$connUnitPortSt
	1

	1680
	$cfcFeatureCtrlIdx_Raw
	1

	1681
	$emsnm
	1

	1682
	$cktNdcInDiscardClp0Cells
	1

	1683
	$slbVirtPort
	1

	1684
	$Int
	1

	1685
	$cmpSrv
	1

	1686
	$tcaThreshValue
	1

	1687
	$sidaAlertDstPort
	1

	1688
	$firewallSrcAddr
	1

	1689
	$ThreshAttribute
	1

	1690
	$nodeAdminStat
	1

	1691
	$fiveVoltsMinus
	1

	1692
	$ssg5000TrapSSMAlarmId
	1

	1693
	$cmdbIpnm
	1

	1694
	$spVersion
	1

	1695
	$cldVirtSt
	1

	1696
	$fcConnUnitSensorEntry
	1

	1697
	$cerent454ThreshDetectTypelook
	1

	1698
	$cpqDaPhyDrvType
	1

	1699
	$nHostAckAuthor
	1

	1700
	$ymd
	1

	1701
	$nodeBulkSwAPCommsFailures
	1

	1702
	$cktLeafFailPort
	1

	1703
	$vtpMaxVlanStorage
	1

	1704
	$fcifElpNbrNodenm
	1

	1705
	$swFwClassAreaIdx
	1

	1706
	$securityIntrusion
	1

	1707
	$ssngMemAddrStr4
	1

	1708
	$nSvcNotifyTypelook
	1

	1709
	$vrrpOperMasterIpAddr
	1

	1710
	$cefcModOperStat
	1

	1711
	$cldeVirtPort
	1

	1712
	$ssngRdbs
	1

	1713
	$subChanStat
	1

	1714
	$ssngDSLID
	1

	1715
	$currTime
	1

	1716
	$wmanifSsRssiStatInfo
	1

	1717
	$ssg5000TrapSubnm
	1

	1718
	$startupSt
	1

	1719
	$slbVirtSrvnm
	1

	1720
	$cpuTwoStat
	1

	1721
	$cpqDaSpareLocationstr
	1

	1722
	$ssngSequencestr
	1

	1723
	$cardNtpPeerAddr
	1

	1724
	$wmanifSsRssiStat
	1

	1725
	$nodeSecondarySyncRefOpSt
	1

	1726
	$stratumMode
	1

	1727
	$cfsFeatureOpnm
	1

	1728
	$ssngATalkAddr1
	1

	1729
	$sidaAlertUDPScanCnt
	1

	1730
	$default_TYPE
	1

	1731
	$connUnitSt
	1

	1732
	$cpimRPMappingChangeType
	1

	1733
	$cpqDaCntlrSerialno
	1

	1734
	$snOspfVirtNbrArea
	1

	1735
	$vlanTrunkPortDynStat
	1

	1736
	$sidaAlertMoreInfo
	1

	1737
	$auditObjectnm
	1

	1738
	$lportDataRate
	1

	1739
	$cldRealIpAddr
	1

	1740
	$cc6kxbarSwBusFailureDuration
	1

	1741
	$spDNSObservedMean
	1

	1742
	$fcifElpRejectReasonCodeExpl
	1

	1743
	$removeConfigFiles
	1

	1744
	$svcAtmConfigQ93bLastCauseRx
	1

	1745
	$diskRedundency
	1

	1746
	$ssngdbnm
	1

	1747
	$snOspfVirtifStatSt
	1

	1748
	$auditClientHostnm
	1

	1749
	$ssngDLCIno
	1

	1750
	$criticalTemperature
	1

	1751
	$OID26
	1

	1752
	$cflifStat
	1

	1753
	$hardDisk0Stat
	1

	1754
	$lportCustomerID
	1

	1755
	$pportOperStat
	1

	1756
	$ssnInfo2
	1

	1757
	$cbgpPeerPrefixThresh
	1

	1758
	$entSensorValue
	1

	1759
	$cardAdminType
	1

	1760
	$ssngRSVPnm
	1

	1761
	$ciscoFlashPartingStat
	1

	1762
	$fanTwoStat
	1

	1763
	$extremeSlotModInsertedType
	1

	1764
	$cmdbIpCntryCode
	1

	1765
	$OID39
	1

	1766
	$securityCause
	1

	1767
	$fspfDomainId
	1

	1768
	$OID21
	1

	1769
	$ssngSPID
	1

	1770
	$pimRPSetHoldTime
	1

	1771
	$PWRUpTrap
	1

	1772
	$nodePsBStat
	1

	1773
	$swSensorStat
	1

	1774
	$zoneMemTypeIdxRaw
	1

	1775
	$dualScpRedundancySt
	1

	1776
	$cipSecTunLifeTime
	1

	1777
	$cardDiagNonFatalSrc
	1

	1778
	$upgradeSwErrorStat
	1

	1779
	$tmp3
	1

	1780
	$securityObjectnm
	1

	1781
	$cikeTunActiveTime
	1

	1782
	$ssngMemAddr
	1

	1783
	$snOspfNbrSt
	1

	1784
	$spDNSObserved
	1

	1785
	$wmanifBsDynSrvFail
	1

	1786
	$cardDiagNonFatalStr
	1

	1787
	$ssngLSnm
	1

	1788
	$jnxCmRescueChgDate
	1

	1789
	$time_str2
	1

	1790
	$cldexVirtIpAddr
	1

	1791
	$swSsn
	1

	1792
	$OID32
	1

	1793
	$rttMonCtrlOperOverThresh
	1

	1794
	$octet3
	1

	1795
	$spReportID
	1

	1796
	$portFailureReasonCode
	1

	1797
	$tcpConnLocalPort
	1

	1798
	$nodeAuthFailReason
	1

	1799
	$pportDS0LoopDownStat
	1

	1800
	$pportds1LoopStat
	1

	1801
	$nodeFanIdx
	1

	1802
	$cldeVirtIpAddr
	1

	1803
	$spFingerprintFeedback
	1

	1804
	$ssngRouterConfigBy
	1

	1805
	$auditNenm
	1

	1806
	$cpqRackPwrSupInputLineStat
	1

	1807
	$missedHB
	1

	1808
	$twelveVoltsPositive
	1

	1809
	$sonetPathCurrentStat
	1

	1810
	$ssg5000TrapALCPortAlarmId
	1

	1811
	$jnxCmCfgChgEventUser
	1

	1812
	$tasCmprsAnnceReasonCode
	1

	1813
	$cardSystemPrimaryClockStat
	1

	1814
	$spFingerprintSender
	1

	1815
	$tcaNeNodeId
	1

	1816
	$ssngVsiVersion
	1

	1817
	$company
	1

	1818
	$cpqDaSpareBay
	1

	1819
	$cpqDaCntlrFWRev
	1

	1820
	$connUnitSensorStat
	1

	1821
	$match1
	1

	1822
	$cikeTunLifeTime
	1

	1823
	$adminNeTime
	1

	1824
	$ssngDestinationFile
	1

	1825
	$cpqFcaPhyDrvFailureCode
	1

	1826
	$connUnitEventId
	1

	1827
	$saveConfigurationReasonCode
	1

	1828
	$fcnmSrvPortId_OctetStr
	1

	1829
	$url
	1

	1830
	$connUnitPortStat
	1

	1831
	$moverDoorSt
	1

	1832
	$mplsL3VpnVrfSecIllegalLblVltns
	1

	1833
	$ProbeStat
	1

	1834
	$soccClusterTableKey
	1

	1835
	$cpqSsChassisRsoStat
	1

	1836
	$ssngTagAllocationPool
	1

	1837
	$nHostNotifyTypelook
	1

	1838
	$ssg5000TrapDS2ChannelId
	1

	1839
	$slbInetAddrType
	1

	1840
	$nodeDiagNonFatalTime
	1

	1841
	$ciscoIpMRouteHeartBeatGrpAddr
	1

	1842
	$extremeSlotModConfigType
	1

	1843
	$fruHistoryObjectno
	1

	1844
	$sysObjectID
	1

	1845
	$dot1dBasePort
	1

	1846
	$hwAccelStat
	1

	1847
	$AttackGlobalId
	1

	1848
	$componentId
	1

	1849
	$dualPwrSup
	1

	1850
	$fcnmSrvPortnm
	1

	1851
	$tcaNenm
	1

	1852
	$fcConnUnitEventType
	1

	1853
	$slbInetAddr
	1

	1854
	$cesRSrvStchangeDescr
	1

	1855
	$nodePortClockBOpSt
	1

	1856
	$auditOperationStat
	1

	1857
	$dsx1LineStat
	1

	1858
	$ciuUpgradeOpStat
	1

	1859
	$cktLeafFailNode
	1

	1860
	$vpnTrapStat
	1

	1861
	$atmacctASCommsSt
	1

	1862
	$atmacctOperSt
	1

	1863
	$ssg5000TrapSrvAlarmDescr
	1

	1864
	$OID25
	1

	1865
	$pimRPSetgrpAddr
	1

	1866
	$pimRPSetgrpMask
	1

	1867
	$routeSrvStat
	1

	1868
	$swFCPortIdx
	1

	1869
	$nodeAuthLoginUser
	1

	1870
	$ssngTagInt1
	1

	1871
	$ssngResponseKey1
	1

	1872
	$tcaclrableSt
	1

	1873
	$atmIntfCurrentlyFailingPVcls
	1

	1874
	$slbRealSrvFarmnm_OctetStr
	1

	1875
	$cfsFeatureOpLastScopeVal
	1

	1876
	$OID29
	1

	1877
	$tcaEmsTime
	1

	1878
	$pportESFDataLinkStat
	1

	1879
	$nSvcAckAuthor
	1

	1880
	$oamActDeactResultCode
	1

	1881
	$cardDiagNonFatalErrMinor
	1

	1882
	$spATMTcaId
	1

	1883
	$cvPortTypeStr
	1

	1884
	$ciscoIpMRouteHeartBeatWinSize
	1

	1885
	$adminCause
	1

	1886
	$cpqFcaCntlrSerialno
	1

	1887
	$ef6000TAIdx
	1

	1888
	$ssngTimeSlot
	1

	1889
	$swEventIdx
	1

	1890
	$wmanifSsDynSrvFail
	1

	1891
	$nodePsCStat
	1

	1892
	$timingReasonCode
	1

	1893
	$sidaAlertDstAddrList
	1

	1894
	$globalStat
	1

	1895
	$ifInErrors
	1

	1896
	$loctcpConnOutBytes
	1

	1897
	$fcConnUnitPortEntry
	1

	1898
	$jnxCmRescueChgTime
	1

	1899
	$rhNEWhyReload
	1

	1900
	$pportLinkDownReason
	1

	1901
	$tcaPerceivedSeverity
	1

	1902
	$vsanAdminSt
	1

	1903
	$jnxLdpSesDownif
	1

	1904
	$lportLossOfCellSequence
	1

	1905
	$cHsrpGrpno
	1

	1906
	$category
	1

	1907
	$slbRealPort
	1

	1908
	$cpStatlook
	1

	1909
	$tmp6
	1

	1910
	$default_OS_ExpireTime
	1

	1911
	$ciscoIpMRouteHeartBeatSrcAddr
	1

	1912
	$cldVirtBindID
	1

	1913
	$fracctLportifIdx
	1

	1914
	$isdnCallerIDAddr
	1

	1915
	$cktLeafEndpointIdx
	1

	1916
	$ssg5000TrapPVCAlarmId
	1

	1917
	$OID36
	1

	1918
	$spHijackAttr
	1

	1919
	$pportPMTcaId
	1

	1920
	$periodicHeartbeat
	1

	1921
	$swFwnm
	1

	1922
	$lportStarvation
	1

	1923
	$cerent454ThresMonitorType
	1

	1924
	$sonetVTCurrentStat
	1

	1925
	$trapVpopId
	1

	1926
	$snSwViolatorPortno
	1

	1927
	$stpxPortIdx
	1

	1928
	$cmdbIpComponentgrp
	1

	1929
	$spBGPTrapNewAttributes
	1

	1930
	$IPAddr
	1

	1931
	$jnxRedundancyswitchover
	1

	1932
	$fruHistoryTime
	1

	1933
	$ssngNeighborStat
	1

	1934
	$ssngControllerLoopbackMode
	1

	1935
	$nenotifId
	1

	1936
	$cpqFcaHostCntlrWWPortnm
	1

	1937
	$mplsL3VpnVrfConfMidRteThresh
	1

	1938
	$atmacctLportSvcControl
	1

	1939
	$neProbableCause
	1

	1940
	$sidaAlertScannedHosts
	1

	1941
	$jnxCmCfgChgEventLog
	1

	1942
	$tcaNeTime
	1

	1943
	$wmanifBsSsStatValue
	1

	1944
	$tcaNenotifId
	1

	1945
	$fracctASCommsSt
	1

	1946
	$cktNdcInDiscardClp01CellThresh
	1

	1947
	$shutdownSt
	1

	1948
	$pportAPSpairedSlotId
	1

	1949
	$auditAcCntnm
	1

	1950
	$ciscoIpMRouteHeartBeatCnt
	1

	1951
	$nodePrimarySyncRefOpSt
	1

	1952
	$internalErrorLocation
	1

	1953
	$nHostNotifynolook
	1

	1954
	$nSvcNotifyno
	1

	1955
	$ipPermitDeniedAddr
	1

	1956
	$cmdbIpSimdefault
	1

	1957
	$nodeNtpOffset
	1

	1958
	$ipv6ifIdx
	1

	1959
	$slbVirtSrvnm_OctetStr
	1

	1960
	$auditEmsnm
	1

	1961
	$extremeEsrpSt
	1

	1962
	$ssngQueueno
	1

	1963
	$radiusAuthSrv
	1

	1964
	$pimRPSetComponent
	1

Appendix E: Other Inventory

Appendix A through E present data from running the RulesToTbl.pl program against an instance of the MTTRAPD rules files. This appendix presents the special functions that feed log files and manipulate the display.

	#
	Field
	Cnt

	1
	log
	4173

	2
	details
	4092

	3
	discard
	391

	4
	update
	31

IMPORTANT NOTICE

ALL INFORMATION PROVIDED IN THIS PAPER IS PROVIDED "AS IS" WITH ALL FAULTS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPIED. NMS GURU DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

NMS GURU SHALL NOT BE LIABLE FOR ANY INDIRECT, SPEICAL, CONSEQUENTIAL, EXEMLARY, PUNITIVE OR INCIDENTAL DAMAGES INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR REVENUES, COSTS OF REPLACEMENT GOODS, LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE ANY PRODUCT MENTIONED IN THIS PAPER, DAMAGES RESULTING FROM USE OF OR RELIANCE ON THE INFORMATION PRESENT, EVEN IF NMS GURU HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

NMS GURU IS NOT LIABLE FOR THE ACCURACY OR UTILITY OF THE INFORMATION CONTAINED IN THIS WHITE PAPER. NMS GURU'S DISCUSSION OF ANOTHER COMPANY'S PRODUCTS AND/OR SERVICES DOES NOT CONSTITUTE EITHER AN ENORSEMENT OR A RECOMMENDATION. THE CONTENTS OF THIS PAPER ARE FOR INFORMATION PURPOSES ONLY.

About NMS Guru

NMS Guru architects and manages comprehensive enterprise management solutions through principal consultants with decades of experience and deep roots into the industry. Specialties include: monitoring, performance, configuration, provisioning, change, and security solutions for networks, systems, applications, and business processes. These practices are integrated holistically by weaving together the strategic initiatives from above (OSS/BSS, BPM, ITIL, FCAPS, TMN, etc) with the tactical realities from below (tools, people, knowledge and processes.) The result is increased operational awareness and extended useful lifespan of the enterprise management solution.
NMS Guru is headquartered in Austin, TX. (Along with NMS tools: IBM Tivoli, CA NetQOS, SolarWinds, and many others.) For more information, visit the website at http://nmsguru.com or call 1.512.617.6694.

Author

Dan Needles is the founder of NMS Guru. Over the past 20 years as an Enterprise IT Operations Architect he has designed and implemented fault, performance and configuration management solutions and products for over 50 fortune 500 companies and government entities. He can be contacted via: guru@nmsguru.com or call 1.512.627.6694.

[image: image21.png]NMS GURU

912.627.6694 - guru@nmsguru.com

COPYRIGHT © 2011, NMS Guru, INC

Any copying, distribution, or use of any of the information contained within this document in any way or form is not permitted without the written consent of NMS Guru.

This is an unpublished work protected under the copyright laws. All rights reserved.

2

[image: image23.png][image: image24.png]NMS GURU

512.627.6694 - guru@nmsguru.com

_1304000318

_1304000345

