Demystifying Correlation Function and Technique

Douglas W. Stevenson

September 11, 2007

Table of Contents

Introduction to Correlation
4

A Simple Definition
4

Causality
5

Causal Summarization
5

Artificial Intelligence
5

Rules Based Correlation
6

Organizational Posture
6

Temporal Methods
7

Backward Chaining
8

Forward Chaining
8

Implementations of Chaining
8

Managed Object Modeling
9

ITIL CMDB
10

Graph Theory
10

Truth Tables
11

Karnaugh Maps
11

Beyond Boolean States
11

A More Complex Example
12

Data Types
13

In Correlation
14

Finite State Automata
14

Moore Machine
15

Mealy Machine
15

Hidden Markov Model
15

Bayesian Belief Networks
15

Sampling Process
16

Pattern Recognition
16

Pattern Application
16

Further Refinement
16

FCAPS
16

Correlation in FCAPS
17

Fault Management
17

Configuration Management
17

Accounting Management
17

Performance Management
18

Security Management
18

Correlation in ITIL
18

Service Delivery
19

Availability Management
19

Capacity Management
20

Financial Management for IT Services
20

IT Service Continuity Management
21

Service Level Management
21

Service Support
21

Service Desk
22

Incident Management
22

Problem Management
23

Change Management
24

Intelligent Discovery
25

Release Management
25

Configuration Management
26

TMN
27

NGOSS
28

Correlation in Service Delivery
28

Correlation in Service Assurance
29

Introduction to Correlation

In the beginning, there wasn't correlation. At least not in software. The effective modus operandi was "Can the node or interface be pinged?". When networks grew in size and scope, during an outage, so many pings would fail that it would create a significant information overload in the Operations Center. With many of these organizations becoming the entry level position into an IT organization, many operators would be overwhelmed by the sheer volume of faults to the point of being totally ineffective as an organization. Furthermore, these conditions of overload created helplessness and significant strife in the personnel and the organization.

Correlation products came about to solve this very issue. Reduce the chaff and false events and present the events to the people that are bonafide issues. This initial problem set solution has been dubbed Root Cause Analysis by many vendors, in an effort to provide a new spin on an existing problem or to position one product as different from another. In all reality, it is more akin to Most Probable Cause Analysis.

There are many ways to solve problems. Some solutions are more difficult than others. Some solutions are tried and found to be lacking while other solutions may function much more effectively than another solutions' methods. In fact, one technique may be a better solution to a specific problem than other, more general conditions. Correlation in Enterprise Management is just another challenge or an issue that needs resolution. This paper takes a look at different approaches toward performing some level of correlation, discusses the various techniques, and hopefully, provides some level of insight for the reader as they strive for Correlation “nirvana” in their own environments.

The correlation time domain we will discuss here in this paper deals with the near real time and not long term trending. If this is not correct in your architecture, your architecture will suffer from time skips, information skewing, and potential confusion. After all, people work in the near real time domain. If your correlation delays events, and if the people can also visualize the real time data and event streams, then your correlation is deemed behind and potentially flawed by the people that use the information. Perception is reality, so it subconsciously implies that the Architecture is also behind and flawed.

A Simple Definition

The term correlation comes from Statistics, first and foremost. Correlation, in statistics, is a measure of relation between two or more variables and, as such, uses a range of -1 to 1 to depict the level of positive relation(1) or negative relation (-1) and no correlation (0). I think that correlation vendors have kind of lost sight in this.

For Correlation in Enterprise Management, it is comparing two or more “thingies” with the determination that they are related to one another or they are not. These “thingies” can be events, managed objects, nodes, subcomponents, actions, or even users. In effect, you are taking two or more things and attempting to derive additional information based upon associations. Once you have derived additional information, correlation is used to transition technical issues and conditions into bonafide workflow.

In our quest for the ultimate solution to the initial problem, correlation merely asks “Is this the IP interface that is the one that signifies the problem?” When I used to teach electronics diagnostics, the technique I used was called the Double Thumb - Nose method. If you look at a schematic and use it as a roadmap to test for a fault point, you find that if you place one thumb on the last good test point and the second thumb on the next test point, when you cross a fault, the answer is under your nose! In effect, the correlation is attempting to tell you about the point in breakage in the network schematic!

Causality

In statistics, Correlation is not equal to Causality. They are different and should be treated as such. In Enterprise Management, sometimes these functions are intermixed as well. Determining a Cause and Effect from a given event lends itself sometimes to be more subjective in nature, especially when you attempt to go outside of a technical process. For example, associating the connectivity of a given network to a business function is static in nature. If things change, the linkage that is now out of date may be confusing and tend to obscure issues.

In some instances, the application of causality can defeat the purpose of correlation as causality needs all of the events and not just the correlated ones. If you attempt to do both functions together, you may end up overloading your management infrastructure. If you separate the functions, you tend to double the data transfer.

Determination of Cause and Effect tends to not be a real time process like correlation tends to be. It is more applicable in post processing types of systems. Besides, the function of correlation can become the cause and/or an effect of an ongoing issue.

Causal Summarization

Not that I don't think Causality is not useful. I think that Causality can be applied to situational awareness scenarios like a Causal determination that is some level of Causal Summarization. For example, the side effect of a link outage is that everything behind this alarm is unreachable. If this were output as a single event illustrating that connectivity beyond XYZ device or to a given site is not possible, beyond that alarm it provides a much better picture of the situation around an alarm that the listing of each and every interface outage of every device behind the breakage.

Artificial Intelligence

Think about this - Artificial intelligence is a process by which we learn facts and derive or deduce additional facts from the current set of facts. Correlation does the same thing except we tend to limit the scope of possibilities we care about and we typically don't do all of the math associated with determination of a varying degree of truthfulness. We tend to go with a more Boolean approach of yes or no.

Rules Based Correlation

The function of doing correlation - comparing two or more thingies to see if you can deduce some other fact, is mandated as a rules based approach. There have to be rules of what to correlate. In the past, some vendors have touted their wares as not being Rules based. Logically, correlation cannot be done without rules. I ascertain that their real approach is that all of the rules are built-in - hidden from the user or administrator.

It should be noted that if you're using correlation to drive workflow in your enterprise, your organization has rules it must adhere to with regards to notifications and alerts, escalations, business notifications and even things like disaster recovery. Correlation must use these rules to effectively hand off information to people according to the business needs.

Organizational Posture

From a business perspective, support organizations are postured or aligned in some varying degree, in one of four postures. These are:

· Inactive - The organization is overloaded to the point of not reacting to anything.

· Reactive - The organization reacts to stimuli as received.

· Interactive - The organization still reacts to stimuli but starts looking for additional stimuli.

· Proactive - Common problems are automated and self corrected.

[image: image1.png]Inactive

Reactive =
i J Unscheduled Downtime
A L
Fout Fout Tt Prblem.
sccurred dectnl pened Cornected
Interactive = Fet, | e
A / A rURscheduled Downtime l #
Pablem. Ticket ekt E— Prblem.
detectal Opened Escalated ‘provided Corrected
Proactive, | Enbln T | Timt
Pblem. Tilet Prblem.

dekctal Openad Corrected

Because of the flux of new technology and the realization that change is always imminent, getting to a purely Proactive posture may be next to impossible across the board. However, it is entirely possible to attain a level of proactive management on some specific and select applications. In fact, in looking at the ITIL recommendations, they provide a way for you to evolve specific support issues from a purely reactive standpoint towards a more proactive stance. More on ITIL later.

Temporal Methods

Temporal or time based correlation is probably the simplest and most prevalent method. It is especially found in organizations that are postured as reactive or inactive as a way to effectively ignore events until they have become persistent over time. In effect, in many cases it is accumulating events over a period of time then only outputting those events that are persistent.

Within correlation, temporal correlation can be applied in two ways:

· Backward Chaining

· Forward Chaining

Backward Chaining

In backward chaining, events are stored and accumulated, and processed after a given interval. In some instances, this is referred to as time slicing. Other instances refer to this approach as accumulation or temporal aggregation. Basically you accumulate all events and triggers over a period of time or slice, then you process these as a chunk. Those events that depict a state change in the end fall through and are output as problems. Those events or triggers that went from a good state to a bad state, then back to good before the time slice is processed, are never seen by users or administrators.

Forward Chaining

In forward chaining, events are processed as they are received. The only temporal part is the queuing of events on a stack. In effect, as an event is received, it is processed and it triggers state changes or additional work, from the point of receipt forward.

Implementations of Chaining

Not to say that one is better than the other, both have valid scenarios where they excel. You just need to understand the methodology so you can make up your own mind on what you prefer for your given problem set.

One thing to consider is that in the real time sense of the work of processing events, forward chaining tends to be much more real time than backward chaining. Consider that you’re accumulating events until a given interval in backward chaining, then processing them either against a truth table of conditions or in sequential order. Given the time slice interval, you may be somewhat real time or you may be delayed by the process one interval behind, dependent upon when the events were received. Also consider that what backward chaining does inherently, is to provide some level of temporal correlation by accumulating, then processing. Conditions such as rapid ups and downs transitioning may be handled with less CPU just because the state is accumulated to whatever is left over from the END of the process interval.

Another area in which backward chaining is more apropos is in the function of analyzing event streams for patterns by event horizon. When an event horizon is achieved, like an interface goes down, if you go backward from that point and sample your event data, you may be able to discern patterns that lead up to the event horizon with some level of probability. This is particularly useful in Bayesian Belief Networks where your belief patterns need to be continuously improved upon.

In forward chaining, events become triggers to initiate other actions. For example, an event that is received is used to trigger a state change in a Finite State Automaton modeling the behavior of the managed object. In effect, forward chaining enables an event driven approach to developing your correlation code as the triggers become a callback to initiate actions as per the definition of the FSM.

It should be noted that temporal correlation using backward chaining can cause confusion or a lack of confidence in the correlation technology. For example, if a correlation delays the presentation of an Interface Down condition on a Router, the Engineer working on the Router is able to discern that the interface is down pretty quickly. If the Engineer catches a problem before the system produces an event, it introduces the thought that the system is behind. The same is true if an end user catches a condition before the management system presents an issue.

In real life fault management, if your Support organization is waiting for problems to occur but prefer to wait until something is definitively identified as down, backward chaining types of correlation may be for you. On the other hand, if you want a more proactive approach to your correlation, forward chaining is more to your liking. I have also found that if you have support personnel that routinely go after issues and problems, they tend to “discover” the time lapse associated with backward chaining.

Managed Object Modeling

Many network management applications do this today. They discover the network, the interrelationships between interfaces and nodes, and build a model of the topology in a database to be used as a reference. Actually the standard MIB-2 MIB and extensions data hierarchy lends itself very well to do just this sort of thing using tables that link instances from one MIB object and instance to another.

One aspect of managed object modeling that is overlooked in some cases is whether that state is observed or derived. In some cases, a model tool may determine that a path is supposed to switch based upon an algorithm used within the managed object. If we assume that a given condition is realized without observation, care must be taken to check for states other than the desired state as these may render the correlation validity useless.

Some Model systems cannot fathom the abstract. For example, some systems cannot monitor an IP network because there is no IP Address to query. Another abstract model commonly seen but seldom modeled is a network Cloud. One may have no access or direct control, but this can be derived from other objects. This network cloud can illuminate path issues and is readily understood by those that perform diagnosis.

Object modeling is the foundation of correlation today. Every system produced today performs object modeling as the core of how it provides correlation results. But that’s OK. When you talk to some of the best and brightest troubleshooters, they start out diagnosis by building a picture of the working system and splitting the reference picture into sections that can be divided and conquered.

TMN

The Object Management Group (OMG) set forth early on with its TMN / 17 Talking Points standards movement which became Common Object Request Broker Architecture (CORBA), they came up with GDMO or Guidelines for Definition of Managed Objects. In short, GDMO is specified in ISO/IEC 10165 / ITU-T X.722 and is a structured description language that provides a way of specifying Object classes, behaviors, attributes, and class ancestry. Containment of information in GDMO is organized into managed Objects that contain:

· Packages that contain:

· Attribute Groups

· Attributes

· Actions

· Notifications

· Behaviors

GDMO is loosely similar to SNMP Structure of Management Information (SMI) but is a much richer, thicker encoding set with Abstract Syntax Notation One format.

ITIL CMDB

In ITIL recommendations, they introduce the concept of a CMDB or Configuration Management Database. In the CMDB are CIs or Configuration Items and these include information about the IT infrastructure, such as computer systems, applications, relationships, networks, and topology, as well as other types of information, such as people, services, and business processes.

In actual implementations, CMDB vendors warn of attaining too much detail as it may become unmanageable. Additionally, CMDB vendors are painfully aware of data volatility, age, and usefulness as things consistently change at rates significantly faster than a typical database can handle.

In building a good data warehouse, care must be taken to ensure that data integrity is maintained across the life of the data. The architect must ensure that each data element has a valid reference source. Also, the CMDB must be architected to not only store a significant amount of information, but also be able to handle outputs in various forms and functions without an adverse effect on the integrity or performance of the database.

Graph Theory

Graph Theory is the study of graphs – mathematical structures used to model pairwise relationships between objects in a given collection. A graph is defined as a series of objects that are interrelated in pairs or in matrices. Graph data can be easily stored and organized as either an incidence list or an adjacency list.

While it may not be readily apparent, many products in one form or another use some form of Graph Theory. In fact, if you understand the behavior of routing protocols like IS-IS or OSPF, these use a form of Graph Theory to do what they do. Topology, as we know it today, is a direct function of graph theory.

Truth Tables

One form of correlation centers around truth tables to perform some level of correlation or comparisons. For example, one could use a truth or logic table to illuminate a known problem. This type of correlation is very common in the design and implementation of Gate Arrays and Boolean logic in electronics.

What you notice when you look at a truth table is that the problem has to be simplified to two columns. For example the table in table 1 depicts a Truth table for a simple two input AND gate.

Input A / Input B
0
1

0
0
0

1
0
1

Table 1 – Boolean Truth Table

As seen in table 1, both inputs have to be 1 for output to be 1. Truth tables that expand beyond two columns of comparison need to be simplified down to two columns in order for truth tables to function effectively.

Karnaugh Maps

Another way of representing Table 1 is as follows

Input A
Input B
Output

0
0
0

0
1
0

1
0
0

1
1
1

When looking at and analyzing Boolean logic, when things get complicated with a significant number of variables, it is necessary to simplify or minimize the logic in the truth table to make it more readable. A common technique used to do this is called Karnaugh Maps. Following is a Karnaugh map of Table 2.

[image: image2.emf]
Beyond Boolean States

Just within the realm of simple SNMP correlation, Truth tables can get pretty busy. For example, in Table 3 we depict a Truth Table for ifOperStatus and ifAdminStatus.

ifAdminStatus
1 up
2 - Down
3 - Testing

ifOperStatus

1 up

UP
Out of Service but still connected
Testing in process - Working

2 - Down

Down
Down and out of Service
Testing and not working

3 - Testing

Testing - Detected
Testing
Testing

Table 3 – Interface Model in a Truth Table

In Table 3, we are in essence, modeling a single interface based on a row in the ifEntry table via SNMP MIB-2.

A More Complex Example

Just for clarity's sake, I will provide a more complex example of an object model in a truth table. Following in Table 4 is a proposed object model based on a Node. I use a simplified table based on end state and the inputs needed to determine that state.

Desired

State
ICMP Ping
SNMP SysUptime
Switch Port

Node Up

Value > interval
up

Node Down
Ping Failure
SNMP Failure
down

Agent Down
Ping good
SNMP Fail or ICMP PORT_UNREACHABLE
up

Node Unreachable
Ping Failure
SNMP Failure and

ICMP HOST_UNREACHABLE
Switch is not accessible.

Node Rebooted
Any
Cold Start, Warm Start received or sysUpTime < In terval
IfLastChange < interval

As you can see, depicting an object model in a truth table can get pretty busy. Once you venture beyond the realm of Boolean values for states, the complexity goes up. Consider this more of a Truth table regarding states. Done another way, it can be represented as a State to State mapping table.

Condition
Old State
New State

ICMP Ping = good OR any value of system.sysUptime.
ANY
Node Up

SNMP Fail OR ICMP Ping fail
Node Up
Node Unknown

ICMP Ping OK
Node Unknown
Node IP OK

SNMP system.sysUpTime OK
Node IP OK
Node Up

SNMP system.sysUpTime OK
Node Unknown
Agent Up

ICMP Ping OK
Agent Up
Node Up

ICMP PORT_UNREACHABLE via an SNMP Poll
ANY
Agent Down

ICMP NODE_UNREACHABLE
ANY
Unreachable

ICMP NET_UNREACHABLE
ANY
Unreachable

COLD Start Trap
ANY
Rebooted

Warm Start Trap
ANY
Rebooted

SNMP system.sysUpTime < Interval * 100
ANY
Rebooted

In this State mapping table, the data is oriented around the transition of objects from state to state, based upon a conditional trigger.

Vendor Implementations

There are several vendor implementations that have been done across the years. Many use a database of one sort or another to facilitate the capture of the managed objects as needed. Some have been done in proprietary formats, some in generic databases, and even some that are implemented as Object Models from Smalltalk or Java. There are even a couple of products that use flat files and XML to map out an Object hierarchy.

Data Types

Within the CMDB are data elements not normally present to correlation engines. Portions of the LDAP infrastructure may be incorporated directly or may be federated into the CMDB. Additionally, business function and process form and function could be federated or manifolded in as well. This would empower a strong correlation engine to be able to use this data as part of more intelligent correlation. Care must be exercised to ensure that Configuration Items and their interdependencies are captured, stored, and maintained and that integrity is maintained.

In Correlation

When implementing correlation, one has to be careful to maintain the integrity of the facts at hand. If the correlation uses facts that are out of date, invalid, or wrong then it bases its findings on wrong data. This yields correlation that may be wrong or cannot be trusted. Object Model approaches like the CMDB and GDMO tend to do very well with static sorts of configuration items or objects. In ITIL CMDBs data elements that can become volatile are usually left out or integrated via a Federated interface. In a Federated interface, they recognize additional Configuration Items but point to another source more closely aligned with the CI in order to maintain this integrity.

In an IP communications world, the network infrastructure components and protocols are designed to be able to self heal in many cases. For example, in an Aggregated Ethernet setup, if one of the four Ethernets goes down, traffic still blazes along. However, if two of the four aggregated trunks fails, a failover may occur for all four aggregated Ethernets.

In an MPLS network, a physical link outage can fast reroute tag switched virtual links in 55 milliseconds. Even in a Frame relay network, an ISDN backup can be exercised in a few seconds after a Frame Relay PVC goes down.

Even in an HTTP world, http connections are setup and torn down several thousand times a second. If you were using the CMDB to model a customer focused process involving the web, this function alone could mire a CMDB implementation into obscurity. Yet one would think that a given customer would be very pertinent to a Sales process. You could end up federating this data via reports after the fact.

How fast do the facts change? When they do change, is the correlation made aware of the change? Is verification needed to ensure that the facts are correct?

Correlation should be done at the lowest possible level. Transforming raw data into information early on allows the system to scale much better and be much more modular as an architecture. At this lowest level, automations can be enacted in near real time without the obfuscation of other layers of processing getting in the way.

Finite State Automata

Finite State Automaton (Automata for plural) or Finite State Machines are a form of Turing machine used to model the behavior of objects. In effect, an Automaton is a mathematical model that, using a set of symbols, walks through a series of states as delineated by transitional logic, or conditions. Finite State Machines have States, Transitions, and Actions. A state stores information about the past or current time frame. A transition indicates a change in state and is described by some condition that would need to be accomplished to enable the transition. An action is a task or activity that is to be executed at a given moment. Action types include:

 Entry action - perform the action when entering the state

 Exit action - Perform the action when exiting the state

 Input action - Perform the action depending on the present state and the input conditions

 Transition action - Perform the action when a transition occurs.

Finite state machines can be represented using a state diagram or as a state transition table. As such, a Database table becomes a Persistent store of finite states. In effect, by maintaining constraints on table elements, one can ensure uniqueness necessary to define a given state.

Within Finite State Machines, there are a couple of prevalent model types – Moore and Mealy. A third type called a Hidden Markov Model will be introduced as well.

Moore Machine

The Moore Machine based FSM uses only entry actions, i.e. output depends only on the current state (by itself). Additionally, each state will have an output signal.

Mealy Machine

The Mealy machine based FSM is one that generates an output for each transition. Mealy machines generate output based on its current state and an input. This means that the state diagram will include both an input and output signal for each transition edge. Generally, Mealy machines have less states than the typical Moore model.

Hidden Markov Model

The Hidden Markov Model is a finite set of states, each of which is associated with a (generally multidimensional) probability distribution. Transitions among the states are ruled by a set of probabilities called transition probabilities. In a particular state an output or observation can be generated, according to the associated probability distribution. It is only the outcome, not the state, that is visible to an external observer and therefore states are ``hidden'' to the outside; hence the name Hidden Markov Model.

In effect, a Finite State Machine is an example of a Markov Chain. A Markov Chain is a sequence of variables that are random, with Markov property. The Markov property states that given the present state, the future and past states are independent.

It should be noted that the Hidden Markov Model is a STATISTICAL model and is much more suited to post processing and batch analysis types of scenarios, not near real time. In effect, the Hidden Markov Model is attuned toward the modeling of probability distributions and may fit very well with Bayesian Belief Networks.

Bayesian Belief Networks

Bayesian Belief Networks, or BBNs, use ratios to numerically calculate patterns in samples based on occurrence. As a ratio, BBNs use a range of 0 to 1 to depict some percentage of a probability that the specific element occurs in every sample. Let's say that each time an event occurs, such as a Link Down, a slice of the previous 2 hours of events were extracted and archived. When the next Link Down is received.

There are a couple of steps required to make BBNs work effectively. These are:

· Sampling process

· Pattern Recognition

· Pattern application

Sampling Process

In order for BBNs to begin to develop a library of patterns, you need to sample previous histories of data each time a given event horizon occurs. For example, every time a link down occurs, you would need to establish a sample period and take all data elements for the period previous to the event horizon. As the event occurs again and again, you build up a library of samples with which to base your pattern recognitions on.

Pattern Recognition

As samples are gathered, when another sample is added, each element in the sample is compared to other samples to see if they occur there as well. This occurrence sampling becomes a ratio of the number of occurrences to the number of non-occurrences.

Pattern Application

As patterns are realized, these can be applied to rules pertaining to a predictive way of realizing an Event Horizon, given some level of probability. In effect, the probability ratio becomes a way of gauging how accurate your prediction may be.

Further Refinement

In order to make BBNs more usable in an Enterprise Management environment, you will need to normalize data in many cases. For example, in a non-normalized mode, a node name would be treated identically to a word like LinkUp. Even timestamps would be treated like a word.

Given that you already know that a node name is a name of a managed object, you can use that in your pattern recognition process as a way to further refine a pattern. When you realize that topology data could be applied to normalize the samples a bit more given they are initiated from a given source event. For example, an event horizon may apply to a given node. However, one may be able to recognize patterns that lead up to the event horizon by understanding and normalizing historical event in the sample by understanding the relationships in topology between the event horizon and a sample.

FCAPS

FCAPS is the ISO model for network management. It forms the cornerstone of current day network management frameworks and architectures. It is an acronym for Fault-Management, Configuration, Accounting, Performance, Security, the categories or Management Functional Areas into which the model breaks the various network management tasks. While MFAs were originally prescribed for telecommunications networks, they have been adapted to data networks and they readily apply to other portions of the enterprise to include, systems, applications, and services.

Correlation in FCAPS

Correlation, as a technical function, brings with it methods and functionality that empower intelligent interrogation and decision making automation at its very core. These types of functions can be applied anywhere within the FCAPS architectural Model.

Fault Management

Fault Management is the Management Functional Area in which problems, error conditions, and incidents are detected and resolved.

With regards to Correlation, most technology has been developed to support this specific MFA. However, many correlation engines stop at the detection of a problem as they tout a Root Cause Analysis capability. Root Cause Analysis only covers fault management up to the detection of a specific problem. In other instances, correlation is applied to work through a problem to correction.

Configuration Management

Configuration Management is, by far, the most important Functional area within the scope of MFAs. Without it, what do you manage? What do you monitor? What happens when things change?

Correlation engines are pretty well grounded in configuration management capabilities. Several depend specifically on a network topology that must be discovered in finite detail in order for the correlation to work properly. If a correlation engine polls via SNMP, it must use strong principles with regards to configuration management to ensure that it is able to capture and adapt to changes very quickly and to ensure the integrity of the polled data. For example, MIB instances may be volatile across a managed node's reboot or restart. When a reboot occurs, the poller must be able to ensure that its polled instances are still valid.

Data discovered via discovery or even the correlation of crossed objects in a MIB tree, can be readily pushed upward as a function of workflow. And this data can be updated and managed in near real time in some cases.

Accounting Management

Account Management is normally associated with tracking and accounting for resource utilization by various entities. Whether its network utilization or disk utilization on a server, accounting empowers us to be able to track and plan for resource utilization.

Correlation engines are absolutely necessary here as if you're tracking resource utilization, when the utilization realizes a threshold or horizon, correlation engines empower you to enact workflow in near real time when things occur. For example, you want to know when a given customer fills a disk array beyond a threshold of 70%. Using a stateful correlation engine, we assume that this would be polled as well as receiving events from the managed device. This threshold crossing could then be actioned to insert a bill_start message in an ERP or Billing system. Same is true for falling below the threshold.

Performance Management

Performance Management deals with the collection of statistical information, generating reports, and providing data / information toward the Performance Analysis process. For the most part, the majority of work accomplished here is not real time in many cases.

Correlation engines are absolutely necessary here in that all of the other MFAs directly affect performance management. For example, in Fault Management an interface goes down. In performance management, it passes no traffic. How does one understand that the interface is down versus the interface is just not passing any traffic? If you're working to become more interactive with network/systems conditions, correlation engines that have customizable polling empower you to monitor performance conditions in near real time AND reutilizes the data for longer term reporting.

Security Management

Security Management in FCAPS used to deal specifically with Access and authentication in Networks. Now it encompasses log management, Intrusion detection, Intrusion Prevention, policy adherence, and anomalous behavior detection.

Correlation engines are absolutely necessary here as one needs to be able to track and follow specific objects across a multitude of devices, be able to cull out and inversely correlate and aggregate information as deemed necessary. Additionally, what good is Security Management if it’s just sitting there watching logs and paging. By the time you get your page and get back on line, the potential exists that several hosts on your enterprise may be owned or root kitted before you have a chance to respond. What if you enacted self protection mechanisms in a correlation engine?

Correlation in ITIL

ITIL differs a bit from FCAPS because it is not an architectural component but rather a series of Best Practices focused toward the management of an IT Infrastructure. There are a series of books that outline the Best Practices areas. The eight ITIL books and their disciplines are:

The IT Service Management book sets are:

· Service Delivery

· Service Support

Other operational guidance includes the following books:

· ICT Infrastructure Management

· Security Management

· The Business Perspective

· Application Management

· Software Asset Management

To assist with the implementation of ITIL practices a further book was published providing guidance on implementation (mainly of Service Management):

Planning to Implement Service Management

And this has more recently been supplemented with guidelines for smaller IT units, not included in the original eight publications:

· ITIL Small Scale Implementation

Service Delivery

The Service Delivery discipline is primarily concerned with the pro-active and forward looking services that the business requires of its IT provider in order to provide adequate support to the business users, it is focused on the business as the Customer of the IT services. On the Service Delivery Function, there are several processes as follows:

· Availability Management

· Capacity Management

· Financial Management for IT Services

· IT Service Continuity Management

· Service Level Management

Availability Management

Availability Management allows organizations to sustain the IT service availability in order to support the business at a justifiable cost. The high level activities are: Realize Availability Requirements, Compile Availability Plan, Monitor Availability, and Monitor Maintenance Obligations.

Correlation engine capability here is vital toward being able to establish effective monitoring but also to be able to manage availability in a real time sense. For example, lets say a File Server is destined for a 99.999% uptime per month. For a given month with 30 days, the total seconds in the month is 2,592,000. 2591974.08 is the minimum number of seconds the file server must be available to meet the objectives. In effect, you can only be down 25.92 seconds for the month in this scenario.

Correlation engines are mandatory here as you need very fine control of your polling as well as you need to be able to recognize when a service is degraded or fails. As you IT processes evolve, its entirely possible that your Correlation engine be used to drive automatic recovery mechanisms. The time to manage these things is now. Some organizations make the mistake of waiting until the end of the week or end of the month to see the final tally of availability. When you manage the real time, you're able to make the best decisions on resources, priorities, and doing that vital customer care.

Capacity Management

Capacity Management supports the optimum and cost effective provisioning of IT services by helping organizations match their IT resources to the business demands. The high level activities are: Application Sizing, Workload Management, Demand Management, Modeling, Capacity Planning, Resource Management, and Performance Management.

Correlation capabilities in this process area empower your IT Support organization to collect the necessary data, empower the automation of provisioning and demand processing as a function of performance. It also provides a solid platform where one can automate process steps in a controlled and measurable way and therefore, work to manage the capacity in an ongoing way.

Financial Management for IT Services

Financial Management for IT Services (ITSM) is an ITIL Service management process area. It is used to plan, control and recover costs expended in providing the IT Service negotiated and agreed to in the Service Level Agreement (SLA). For example, we know that in our 99.999% availability requirement, it will require clustering, redundant power, and either Layer 4 switching or a DNS Rotor. Also, highly available disk space needs to be readily accessible in short order, should a failure occur. All these capabilities cost extra.

One of the most common areas in which Financial Management has very high return on investment is in maintaining the proper maintenance on hardware and software. Additionally, many vendors impose penalties and potential recertification of components if the maintenance contract lapses. Still in other cases, one should not have maintenance on software that isn't being used or is no longer present.

Correlation can be applied to do deep discovery of Hardware, Software and firmware presence as well as versions, module changes, and node changes. When instance data is included with detailed identification data elements into the CMDB, the CMDB becomes a much more useful tool for Financial Analysis and services.

In areas where managed services are provided, when a refund is appropriate, correlation technology needs to be applied before hand so that personnel are aware of an impending SLA violation and subsequent monetary discount so that the people can manage to the situation. Managing these scenarios in past tense is ineffective and a bit of a career limiting technique.

IT Service Continuity Management

IT Service Continuity Management helps to ensure the availability and rapid restoration of IT services in the event of a disaster. The high level activities are: Risk Analysis, Manage Contingency Plan Management, Contingency Plan Testing, and Risk Management.

Correlation is key to empowering an automated method of Disaster Recovery. Think about it. You can automate using the same polling and workflow mechanisms found in correlation engines. Not only is it important that you have a disaster recovery plan but you need to be able to plan, test, and evaluate your effectiveness each time.

Service Level Management

Service Level Management provides for continual identification, monitoring and review of the levels of IT services specified in the Service Level Agreements (SLAs). Service Level Management ensures that arrangements are in place with internal IT support providers and external suppliers in the form of Operational Level Agreements (OLAs) and Underpinning Contracts (UpCs). The process involves assessing the impact of change upon service quality and SLAs. The service level management process is in close relation with the operational processes to control their activities. The central role of Service Level Management leads to it being the natural place for metrics to be established and monitored against a benchmark.

Service Level Management is the primary interface with the Customer (as opposed to the User who is serviced by the Service Desk). Service Level Management is responsible for ensuring that the agreed IT services are delivered when and where they are supposed to be and for liaising with Availability Management, Capacity Management, Incident Management and Problem Management to ensure that the required levels and quality of service are achieved within the resources agreed with Financial Management and appropriate IT Service Continuity plans have been made to support the business and its continuity requirements.

Correlation is PARAMOUNT to effective Service Level Management. In order to meet or exceed Service Levels, you need to be able to manage risks to the Service Level in near real time. When situations occur, these need to be brought to the attention of personnel supporting the customer and support the service. If you wait until the end of the week for your SLA reports, you're not really managing SLAs, are you? Could be you're only managing SLA reports!

A solid correlation engine also empowers architects, engineers, and Developers to be able to benchmark your existing Services per the SLA and provide increases or discriminators for additional service offerings.

Service Support

The Service Support ITIL discipline is focused on the User of the ICT services and is primarily concerned with ensuring that they have access to the appropriate services to support the business functions. On the Service Support Function, there are several processes as follows:

· Service Desk

· Incident Management

· Problem Management

· Change Management

· Release Management

· Configuration Management

To a business, customers and users are the entry point to the process model. They get involved in service support by:

· Asking for Changes

· Needing communication, updates

· Having difficulties, queries.

The service desk is the single contact point for the customers to record their problems. It will try to resolve it, if there is a direct solution, or will create an incident. These Incidents initiate a chain of processes: Incident Management, Problem Management, Change Management, Release Management and Configuration Management. This chain of processes is tracked using the Configuration Management Database (CMDB), which records each process, and creates output documents for traceability via Quality Management.

Service Desk

The Service Desk function plays an important part in the provisioning and delivery of IT services. It is often the first contact users and customers have in their use of IT services. The Service Desk function performs first line support for IT Services. Additionally, it becomes the single point of contact for information for all problems, incidents, questions, comments, and requests for services or changes. Ultimately, the Service Desk becomes a centralized point for knowledge and situational awareness in the IT organization.

Valid and strong Correlation engine capabilities are vital toward the Service Desk function to be able to adapt to the technology and drive towards better MTTR/MTBF metrics, and empowers them to be aware of ongoing situations in near real time. In no uncertain terms, without the application of good correlation, the Service Desk function cannot effectively optimize its working processes and cannot sharpen its overall situational awareness of the enterprise.

Incident Management

The Incident Management process is the responsibility of the Service Desk function and its overall objective is to coordinate the rapid restoration of IT Services. By itself, Incident management does not repair any failed component but provides for coordination of the effort through other functional areas in the IT organization. Typically, a Service Desk staff member goes through a process with carefully crafted questions and task steps to either solve the problem quickly or be able to escalate this to Problem Management and to other support functions. In some scenarios, the process taskings are called play books which document the questions to ask and anticipated answers so that they know what to do.

Valid and strong Correlation Engine capabilities empower people to be able to automate portions of the Incident Management process as the process and organization matures. Correlation drives this workflow initially as the handoff between the ENMS and the personnel. This can be by several methods such as forwarding an event to an event browser, paging, email, automatic Ticket generation, or even text to speech. The important thing here is that everything that is forwarded, needs to be referenced to a play book so that workflow is consistent, functional, and usable.

Problem Management

The goal of Problem Management is to resolve the root cause of incidents and thus to minimize the adverse impact of incidents and problems on business that are caused by errors within the IT infrastructure, and to prevent recurrence of incidents related to these errors. A ‘problem’ is an unknown underlying cause of one or more incidents, and a ‘known error’ is a problem that is successfully diagnosed and for which a work-around has been identified. The CCTA defines problems and known errors as follows:

A problem is a condition often identified as a result of multiple Incidents that exhibit common symptoms. Problems can also be identified from a single significant Incident, indicative of a single error, for which the cause is unknown, but for which the impact is significant.

A known error is a condition identified by successful diagnosis of the root cause of a problem, and the subsequent development of a Work-around.

Problem management is different from incident management. The principal purpose of problem management is find and resolve the root cause of a problem and prevention of incidents; the purpose of incident management is to return the service to normal level as soon as possible, with smallest possible business impact.
The problem management process is intended to reduce the number and severity of incidents and problems on the business, and report it in documentation to be available for the first-line and second line of the help desk. The proactive process identifies and resolves problems before incidents occur. These activities are:

· Trend analysis;

· Targeting support action;

· Providing information to the organization.

The Error Control Process is an iterative to process known errors until they are eliminated by the successful implementation of a change under the control of the Change Management process.

The Problem Control Process aims to handle problems in an efficient way. Problem control identifies the root cause of incidents and reports it to the service desk. Other activities are:

· Problem identification and recording;

· Problem classification;

· Problem investigation and diagnosis.

Correlation is paramount to an effective Problem Management function. One must use correlation to weed out the number of problems as they are identified and diagnosed. Additionally, the customizing and configuration of correlation is done here for Incident Management. Coupling Correlation with valid documentation regarding the play books, Problem Management personnel work to eliminate guesswork and additional incidents.

Correlation capabilities are natural in this area and many vendors products somewhat fit. But be forewarned, without being configurable, correlation functionality cannot be optimized. In effect, why you buy is what you get.

Change Management

The objective of Change Management in ITIL context, is to ensure that standardized methods and procedures are used for efficient and prompt handling of all changes to controlled IT infrastructure, in order to minimize the number and impact of any related Incidents upon service. Changes in the IT infrastructure may arise reactively in response to Problems or externally imposed requirements, examples include management imposed changes, or proactively from seeking imposed efficiency and effectiveness or to enable or reflect business initiatives, or from programs, projects or service improvement initiatives. In effect, if something in the CMDB needs to change, it should go through the Change Management process.

From a correlation standpoint, the importance of the change management process cannot be overstated. The Change Management process reflects not only technical but personnel and business related data. For example, a simple network change occurring from 12:00 AM to 1:00 AM on two network devices should empower the suppression of escalations during the interval, trigger a rediscovery after the work has been completed, and help to notify personnel that need to know about the change as it occurs. In effect, the changed devices may have to be dropped out, then reloaded during or after the maintenance has been done.

Consider a scenario where changes are being made in the infrastructure and there are no Change Management processes ongoing. Would this be considered an Incident? Correlation engines that are performing status and configuration related polling and event reception easily catch these sorts of issues.

Within the CMDB, there is a concept of Status. Granted, in an enterprise there are various forms of status such as in or out of production, in or out of scheduled maintenance, performance status, security status, and even up and down status. All these statuses are very pertinent to an effective IT organization in each of these forms and functions.

As part of a functioning CMDB, considerable effort needs to be dedicated to implementation of intelligent discovery. Given that the one constant in your enterprise is change, whatever you use for discovery must be able to evolve, adapt and overcome changes to the enterprise.

Intelligent Discovery

Discovery is one of the most important aspects of Enterprise management. In order to monitor and manage faults, configurations, and even performance, the applications performing these functions need to have a firm grasp on what is installed and what rules are applied to monitor and manage this stuff. Not only do you need to discover the one for one elements like ports and modules but also the relationships between components.

Not all of the data necessary to do an intelligent discovery may be present via SNMP MIBs or straight queries. In some instances, the ambiguity of a system may need to be protected and managed in more indirect ways. For example, many Firewalls do not have SNMP Agents loaded and do not respond to ICMP queries. However, the Firewall is very manageable via an SSL/LEAH connection and its events readily available via Syslog.

In real life, things change when faults occur. After all, the network, its protocols and components, are designed to be fault tolerant and to adapt to fault conditions in predictable ways to provide more reliable services. For example, an MPLS fast reroute takes 55 milliseconds in most cases. When this occurs, traps and syslogs are generated and internal tables are changed to reflect the change.

In a few switch implementations that use hot swappable modules, when a module is swapped out, the MIB subobject index numbering changes. Active SNMP pollers used in correlation engines catch this via the SNMP error message SNMP_NO_SUCH_NAME when it polls an instance that is no longer present. These represent flags that should initiate a rediscovery of the indexes so that the polling and management stay current. In many cases, a Warm Start, cold start or reboot signify this same sort of response for the whole node in that many subobjects' index numberings are volatile across a reboot or restart.

If you are implementing a CMDB, these dynamic changes become very critical to the CMDB in that it can grow out of date in less than a minute. Correlation engines empower your CMDB to be much more effective and up to date.

Any time you create a condition where false data is presented to a user, you create an inherent distrust of the system and in many cases, will prompt the user to intuitively recheck the configuration every time the data is presented.

Release Management

Release Management is used for platform-independent and automated distribution of software and hardware, including license controls across the entire IT infrastructure. Proper Software and Hardware Control ensure the availability of licensed, tested, and version certified software and hardware, which will function correctly and respectively with the available hardware. Quality control during the development and implementation of new hardware and software is also the responsibility of Release Management. This guarantees that all software can be conceptually optimized to meet the demands of the business processes. The goals of release management are:

· Plan to rollout of software

· Design and implement procedures for the distribution and installation of changes to IT systems

· Effectively communicate and manage expectations of the customer during the planning and rollout of new releases

· Control the distribution and installation of changes to IT systems

The focus of release management is the protection of the live environment and its services through the use of formal procedures and checks.

Correlation technology empowers your Service Desk to visualize potential issues during rollouts and massive changes and to be able to respond to these in an informed way. Additionally, when new services are delivered, the monitoring and management technology needed to support this should be part of the Release as well.

Configuration Management

Configuration Management is a process that tracks all of the individual Configuration Items (CI) in a system. A system may be as simple as a single server, or as complex as the entire IT department. Configuration Management includes:

· Creating a parts list of every CI (hardware or software) in the system.

· Defining the relationship of CI's in the system

· Tracking of the status of each CI, both its current status and its history.

· Tracking all Requests For Change to the system.

· Verifying and ensuring that the CI parts list is complete and correct.

There are five basic activities of Configuration Management:

· Planning: The Configuration Management plan covers the next three to six months in detail, and the following twelve months in outline. It is reviewed at least twice a year and will include a strategy, policy, scope, objectives, roles and responsibilities, the Configuration Management processes, activities and procedures, the CMDB relationships with other processes and third parties, as well as tools and other resource requirements.

· Identification: The selection, identification and labeling of all CIs. This covers the recording of information about CI's, including ownership, relationships, versions and unique identifiers. CIs should be recorded at a level of detail justified by the business need, typically to the level of "independent change".

· Control: This gives the assurance that only authorized and identifiable CIs are accepted and recorded from receipt to disposal. It ensures that no CI is added, modified, replaced or removed without the appropriate controlling documentation e.g. Approved RFC, updated specification. All CIs will be under Change Management Control.

· Status Accounting: The reporting of all current and historical data concerned with each CI throughout its life-cycle. It enables changes to CIs and tracking of their records through various statuses, e.g. ordered, received, under test, live, under repair, withdrawn or for disposal.

· Verification and Audit: This is a series of reviews and audits that verifies the physical existence of CIs, and checks that they are correctly recorded in the CMDB. It includes the process of verifying Release and Configuration documentation before changes are made to the live environment.

TMN

In May of 1996, the NM Forum introduced a recommendation titled M.3010 which brought forth the concept of a TMN or Telecommunications Management Network. This recommendation was developed as a framework for Service Providers to manage their Service Delivery networks. In effect, the M.3010 recommendation consisted of four management architectures at different levels of abstraction – function, physical, informational, and logical layered.

It is within the Logical Layer that introduces the additional four layers of abstraction as follows:

· BML – Business Management Layer – Business related functions.

· SML – Service Management Layer – Services related functions

· NML – Network Management Layer – Fault & Performance Management

· EML – Element Management Layer – Element / Configuration Management

This model of sorts provides a definitive linkage between IT assets and their performance with the ability of the business to use and support those assets. In effect, it provides alignment between IT and the Business.

While all this is good strategy, it is not enough. In April of 1997 the NM Forum brought out recommendation M.3400. M.3400 reintroduces the FCAPS model of X.700 (circa September 1992) in with the TMN model structure. In early 1998, the NM Forum was changed to the TeleManagement Forum.

As the TMN model has evolved, new functions and concepts have been introduced. For example, eTOM is the evolution of the original Telecom Operations Map as introduced in 1997 as part of the Smart TMN initiative. The Smart TMN initiative was the precursor to the NGOSS initiative today.

NGOSS

NGOSS has also evolved through several iterations or versions as new telecommunications needs arise. For example, in 2005, the TM Forum released a new version of eTOM documenting the complimentary relationship between eTOM and ITIL.

NGOSS establishes a set of principles that an OSS integration should adopt in addition to a set of models that provide for standardized approaches.

The models include :

· Information Model – Shared Information / Data Model – SID.

· Process Model – the enhanced Telecom Operations Map fits here.

· Lifecycle Model

The TMN describes the NGOSS model as loosely coupled, distributed, and component based.

Correlation in Service Delivery

When services are ordered, they need to be provisioned. As such, accurate inventory of what’s available is needed to ensure that redundancy and capacity sparage are kept at or below recommended levels. Today, a significant amount of provisioning applications rediscover assets at the time of provisioning so that they catch a lack of capacity in ports or modules during the provisioning process. In this manner, they can adapt to this deficiency and have another module provisioned as part of the overall provisioning process.

However, this is not the time to recognize that a manual process is required to install another module or maybe even another switch or router. The sooner that billing is applied, the sooner the business receives revenue. These manual processes need to be handled outside the realm of customer need or urgency. One may have to order modules that have a lead time or transfer materials to a given site. Then, a technician must be scheduled and dispatched to perform the installation and turn up of the equipment.

The correlation applied during fault management could be used to flag the loss of components and modules back to the provisioning system in a near real time manner. When capacity rules specify, new modules can be added but not under the constraint of a customer need.

Correlation in Service Assurance

This is what Correlation engines do today. They function primarily in the Fault management arena. Performing advanced correlation here results in overall better service to the customer and in many cases, can be used as a business or service discriminator differentiating one providers services above another providers.

In Summary

Correlation is a very complex function that needs to be broken down and presented in simple, bite size chunks. All too often, though, the presence of correlation is kept complex in its terms and explanations in hopes that the function becomes something irreplaceable or too complex to upgrade. When broken down in technique, you can start to understand the approach and form and function of a given correlation engine.

Correlation is not as difficult as once thought. Some techniques measure up and some don't. Hopefully I have armed you with enough insight and knowledge for you to choose product and capability over marketing hype.

Remember that the correlation we have discussed here deals mainly with near real time events and a very finite initial time domain. Bayesian Belief networks expand beyond that because of the need for multiple samples across a long period of time.

When you start looking at the merging of business intelligence and expanding the time domain looking for trends and longer terms anomalous signatures, some of the techniques we have discussed can be applied again in differing problem spaces in order to illuminate and derive new information from the current known base. Additional techniques need to be tried and proven continuously as the problem data set changes continuously. Some term this as analytics.

The uncharted frontier for correlation is its longer term application to help solve discovery, recognition and filtering using business intelligence and data mining techniques. What intermediate data sets are possible? What can be derived further from what we already have especially when we create pseudo data sets of derived fact stores? How can we build display mechanisms that adequately illustrate both changes and non-changes across a significant time domain and still make sense?

00

10

11

01

